Albert-Ludwigs University Freiburg Department of Empirical Research and Econometrics

Lecture Notes on

Time Series Analysis

by Assoc. Prof. Dr. Sevtap Kestel

6-10 June, 2011

Contents

1.	Review of Statistics4
2.	Introduction to Time Series18
3.	Classical Time Series Analysis26
4.	Stochastic Time Series Modeling40
5.	Forecasting64
6.	Model Selection and Non-Stationary Time Series Model77
7.	Seasonal ARIMA Models105
8.	ARCH(m) (Autoregressive Conditional Heteroskedasticity) Models115
9.	Vector Autoregressive Analysis124
10	. References

Course Outline

The study of the sequence of data points measured at successive times enables us to often either to understand the underlying theory of the data points (where did they come from what generated them), or to make forecasts (predictions). **Time series** *prediction* is the use of a model to predict future events based on known past events: to predict future data points before they are measured.

The objective of the course is to provide students to learn time series modelling in theory and practice. The course will start with reviewing the fundamental concepts in regression analysis. Autocorrelation function, Linear Stationary models: General linear process, Autoregressive, Moving averages, ARMA processes, Non-stationary models: Autoregressive Integrated Moving Average and Integrated Moving Average processes, Forecasting: Minimum Mean Square Error Forecast, updating forecasts, Stochastic Model building: Model identification, Model estimation (maximum likelihood estimation), Model diagnostic checking, Seasonal models, Spectral analysis and filtering, Vector Autoregressive Models, and cointegration will be covered.

Course Schedule

Lecture	Topics	Chapters to be covered
Day 1	Introduction, classical Time series	1-4
Day 2	Stochastic Time series	4
Day 3	Forecasting, Integrated models, unit root	5-6
Day 4	Multiplicative seasonal models, ARCH (m)	7-8
Day 5	Vector Autoregressive Models and Cointegration	8-9

Teaching Methods:

Presentation of teaching materials include introduction of the theoretical base with illustrative examples and exercises solved in the class. Tutorials enhance the application of the theory and the interpretation of the results. Application to data set by using Software Eviews will be presented during PC Pool sessions. Students are **strongly** recommended to participate lectures and tutorials.

Grading:

Final Exam (75%)

A comprehensive 90 min. final exam will be given. The test will be in-class and closed-book exam. If you miss the final exam, you will be treated according to the regulations of the University. Students are required to pass at least 50% of the final examination.

Assignments (25%)

A group of two students will submit one set of assignment given during the teaching period. The deadline of all assignments are due to the Final Examination (August 4, 1011, 14:00 h)

Chapter 1 Review of Statistics

Definition: A numerically valued function X of w with domain Ω ,

 $w \in \Omega$: $w \to X(w)$ is called a **random variable** (r.v).

Proposition: If X and Y are random variables, then any mathematical combination of those, such as, X + Y, X - Y, XY, $\frac{X}{Y}(Y \neq 0)$ and aX + bY are also random variables.

	Countable Case	Density Case
Range	$V_n n=1,2,\cdots$	$-\infty < u < \infty$
probability	P_n	f(u)du = dF(u)
$P(a \le x \le b)$	$\sum_{a \leq V_n \leq b} P_n$	$\int_{a}^{b} f(u) du$
$P(X \le x) = F(x)$	$\sum_{V_n \leq x} P_n$	$\int_{-\infty}^{x} f(u) du$
E(X)	$\sum P_n V_n$	$\int_{-\infty}^{\infty} u f(u) du$
condition	$\sum_{n} P_{n} V_{n} < \infty$	$\int_{-\infty}^{\infty} u f(u) du < \infty$
E(Q(X))	$\sum \varphi(x) f(x)$	$\int_{-\infty}^{\infty} \varphi(u) f(u) du$
Variance	$\sum \left(X-\mu\right)^2 f(x)$	$\int_{-\infty}^{-\infty} (X-\mu)^2 f(u) du$
Skewness	$\frac{\sum (X-\mu)^3 f(x)}{\sigma^3}$	$\frac{\int\limits_{-\infty}^{\infty} (X-\mu)^3 f(u) du}{\sigma^3}$
Kurtosis	$\frac{\sum (X-\mu)^4 f(x)}{\sigma^4}$	$\frac{\int_{-\infty}^{\infty} (X-\mu)^4 f(u) du}{\sigma^4}$

Independent Random Variables:

If two variables X and Y are independent, then the following hold

$$F(x, y) = F(x).F(y)$$

$$f(x, y) = f(x).f(y)$$

$$E(xy) = E(x).E(y)$$

$$Cov(x, y) = 0; \quad \rho_{xy} = 0$$

The Normal Distribution

Normal (Gaussian) distribution has the following properties:

- o symmetrical
- o easy to estimate probabilities
- o inferential statistics

The Normal Distribution is the most commonly used distribution in statistics. It has a unique mode. The observations lie around the mean, median and mode value symmetrically. The density, mean, variance of the distribution are:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} -\infty < x < \infty$$
$$E(x) = \mu \quad \sigma^2 = V a(x)$$

Standard Normal Distribution is used to define the variables which are originally normally distributed and standardized around the mean.

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

<u>**Theorem 1**</u>: If X is $N(\mu, \sigma^2), \sigma^2 > 0$, then the r.v $W = \frac{X - \mu}{\sigma}$ is N(0, 1).

<u>Theorem 2</u>: If the r.v X is $N(\mu, \sigma^2), \sigma^2 > 0$, then the r.v $V = \frac{(X - \mu)^2}{\sigma^2}$ is a Chi-square

distribution with degrees of freedom 1, $\chi^2(1)$.

Hypothesis Testing

A statistical hypothesis is a statement about the distribution of X. If the hypothesis completely specifies the distribution, then for a simple hypothesis, we define

•

$$H_0: \theta = \theta_0$$
$$H_A: \theta = \theta_1$$

otherwise, a composite hypothesis is defined as

$$H_0: \theta \ge \theta_0$$
$$H_A: \theta < \theta_0$$

Critical region is the subset of sample space that corresponds to rejecting the null hypothesis.

Type I error refers Rejecting a true H_0 ; Type II error and Type II error refers to Failing to

reject a false H_0 (Accepting a false H_0). The probabilities of those errors define:

 $P(Type \ I \ error) = \alpha$ and $P(Type \ II \ error) = \beta$

For simple H_0 , the probability, of rejecting a true $H_0(\alpha)$ is referred to as the **significance** level, denoted by α .

For composite H_0 , the size of the test (critical region) is the maximum probability of rejecting H_0 when it is true.

Standard approach specified select some acceptable level of α determine the value of critical value. Among all critical regions of size α , we choose the one with smallest β . The power function $K(\theta)$ is the probability of rejecting H_0 when the true value of the parameter is θ .

Example: Suppose the random variable denotes **w**aiting times in a bank queue. The aim is to determine if the mean waiting time is equal to 7 minute. or not is tested based on a random sample of 315 observations as follows:

One-Sample t-Test

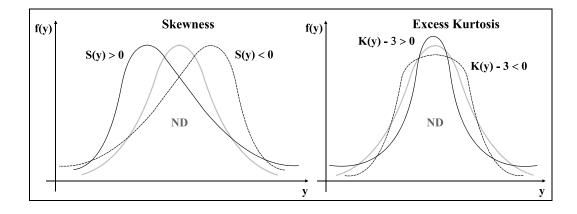
Tes	t Value $= 7$					
	t	df	Sig.	Mean	95% Confidence Interval	
			(2-tailed)D	oifference	of the Difference	
					Lower	Upper
Wait time	-25.490	314	.000	-1.6748	-1.8041	-1.5455
in min.						

Tests of Normality

- 1. Parametric approach : Goodness of fit tests
- 2. Non-parametric approach: Kolmogrov-Smirnov tests

- 3. Graphical approach: P-P, Q-Q plots are the graphs of percentiles of ordered observations. They should form a linear pattern.
- Jarque-Bera test statistics: depends on the values of sample skewness and kurtosis
- For a normally distributed random variable (r.v.) Skewness S(y)≈0; Kurtosis K(y) ≈3

Normal Q-Q Plot of Wait time in minutes **Observed Value**


Example: Q-Q Plot of the example on the waiting times in the queue

One-Sample Kolmogorov-Smirnov Test Variable: Waiting time

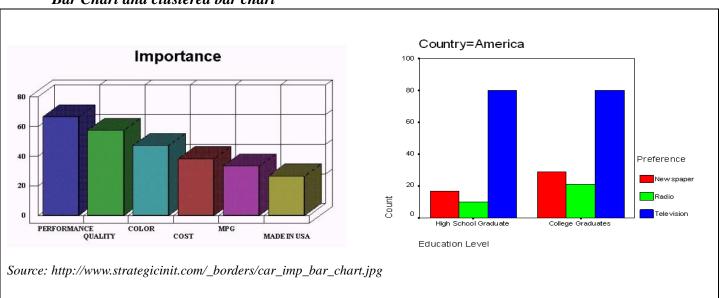
		Wait time in
		mi utes
Ν		315
Normal Parameters	Mean	5.3252
	Std. Deviation	1.16614
Most Extreme Differences	Absolute	.039
	Positive	.039
	Negative	028
Kolmogorov-Smirnov Z		.686
Asymp. Sig. (2-tailed)		.734

- a Test distribution is Normal.
- b Calculated from data.

Jargue-Bera Test:

The test statistics is:

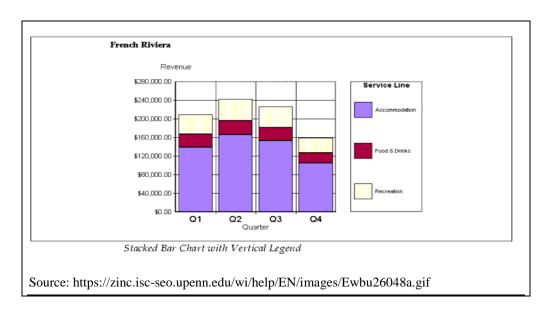
$$JB = \left(\frac{T}{6}\right) \cdot \left(\hat{s}^2 + \frac{1}{4}(\hat{k} - 3)^2\right) \sim \chi^2(2)$$


T : the number of the observations in the sample, \hat{S} : sample skewness; \hat{k} : sample kurtosis,

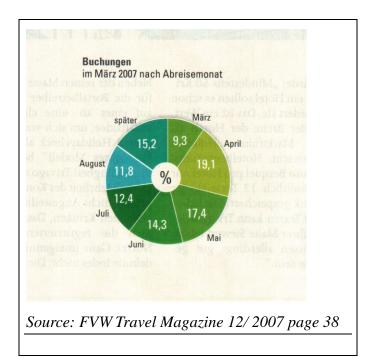
 H_0 : Data set is normally distributed versus alternative that data follow a different distribution. Some significance values are: $1\% \approx 9,21$ and $5\% \approx 5,99$

Use of Graphics in Analyses

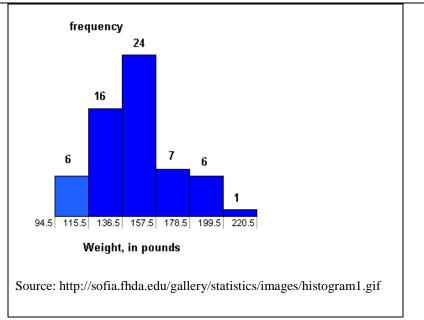
Illustrative representation of the observations give researcher an important information on analysing the behavior and the pattern of the data set. There are many graphical methods which depend on the type of the data as well as the choice of selection.


Examples: The following is the illustrations for some graphical representations which are commonly used for quantitative and qualitative data sets.

Bar Chart and clustered bar chart

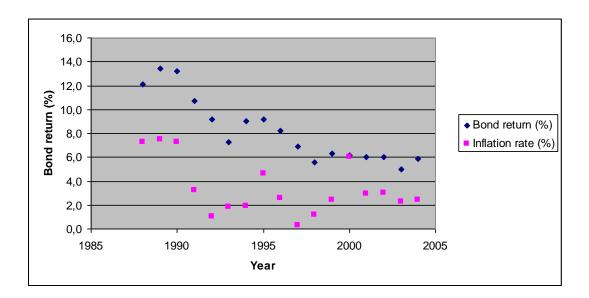

Stacked bar chart

The variables in this graph are the revenues which result from the different service lines (Accommodation, Food& Drinks and Recreation) on the French Rivera. The categories are the quarters Q1, Q2, Q3 and Q4.

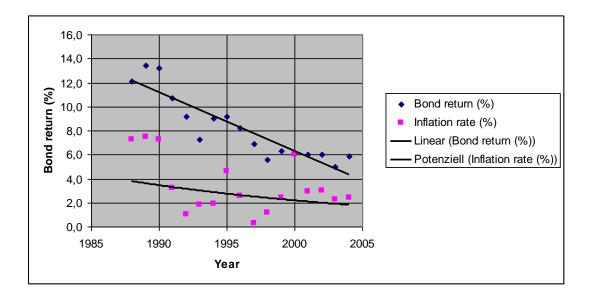


Pie chart

The variables in the pie chart are the numbers of bookings in percentages in march 2007. The categories are the different months in which the holidays will start. The most booked holidays in march are booked for April, May, June, July and August.



Histogram



The variables in this graph are the numbers of frequencies. The categories are the different weights in pounds. The histogram describes a right skewed curve. With 24 has the weight of 157.5 the highest frequency.

Line graphs

Since 1988 the bond return rate and the inflation rate converge. Maybe in the future there will be equal.

The bond returns rate decrease. The inflation rate will be equal. The inflation rate was the highest in the time between 1988 and 1990.

Use of Descriptive Statistics

Example: The series inflation rate and bond return **Measures of Location:**

	N Minimum Maximum						
Inflation rate	17	0,3	7,5	3,394			
(%)							
Bond return	17	5,0	13,4	8,247			
(%)							

Measures of Dispersion:

N	Range	Std.	Variance
	D	D eviation	
Inflation rate 17	7,2	2,3015	5,297
(%)			
Bond return 17	8,4	2,7178	7,386
(%)			

Example: Waiting times in a bank queue

	Ν	Range I	Minimum	Maximum	Mean	Std.	Variance
]	Deviation	
Wait time	315	7.54	2.36	9.90	5.3252	1.16614	1.360
in min.							
	Ν	Mean	Std.	Std. Error			
]	Deviation	Mean			
Wait time	315	5.3252	1.16614	0.06570			
in min.							

Association between two variables

$$\mu_{1,1} = E[(X - \mu_X)(Y - \mu_Y)] = Cov(X, Y) = \sigma_{XY}$$

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

is called the Covariance between random variables X and Y.

Theorem: If random variables X and Y are independent, then Cov(X,Y)=0.

Remark: The reverse is not always true.

Theorem: Let $X_1, X_2, ..., X_n$ be random variables having finite variances, $\sigma_{X_1}^2, \sigma_{X_2}^2, ..., \sigma_{X_n}^2$,

respectively, and covariance, $\sigma_{x_i x_j} \neq 0$ $i \neq j$ i, j = 1, 2, ..., n. Define a new random

variable $Y = \sum_{i=1}^{n} a_i X_i$ for any set of constants a_i , i=1,...,n. Then

$$\sigma_Y^2 = Var[Y] = Var[\sum_{i=1}^n a_i X_i] = \sum_{i=1}^n a_i^2 Var[X_i] + 2\sum_{i \neq j} \sum_{i \neq j} a_i a_j \sigma_{X_i X_j}$$

Example: Let X_1, X_2 be r.v's having means μ_{X_1}, μ_{X_2} , variances $\sigma_{X_1}^2, \sigma_{X_2}^2$ and covariance

$$\sigma_{X_1X_2} \neq 0$$

$$Y = 4X_1 - 5X_2$$

$$E[Y] = 4\mu_{X_1} - 5\mu_{X_2}$$

$$Var[Y] = 16\sigma_{X_1}^2 + 25\sigma_{X_2}^2 - 40\sigma_{X_1X_2}$$

Correlation Coefficient

Definition: Let X_1, X_2 be r.v's having means μ_{X_1}, μ_{X_2} , variances $\sigma_{X_1}^2, \sigma_{X_2}^2$ and covariance $\sigma_{X_1X_2} \neq 0$, the correlation coefficient, ρ ; the measure of association between two variables is

$$\rho = \frac{Cov(X_1, X_2)}{\sqrt{Var[X_1]}\sqrt{Var[X_2]}} = \frac{\sigma_{X_1X_2}}{\sigma_{X_1}\sigma_{X_2}}; \qquad -1 \le \rho \le 1$$

Example:

Pearson	S	Correlation:
I curbon	D	continuitoni

		Bond return (%)	Inflation rate (%)
Bond return (%)	Correlation	1	0,688
	Sig. (2-tailed)	0	0,002*
	Ν	17	17
Inflation rate (%)	Correlation	0,688	1
	Sig. (2-tailed)	0,002*	0
	Ν	17	17

** Correlation is significant at the 0.01 level (2-tailed).

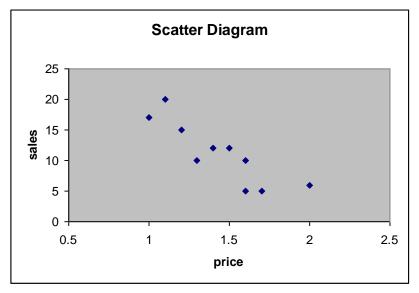
The Method of Least Squares:

Given a linear equation $Y = \alpha + \beta X + \epsilon$, the estimated line $\hat{\mu}_{Y|X} = E[Y|X] = \hat{\alpha} + \hat{\beta}X$ requires the estimation of the parameters α and β . To attain the best fit the estimates of α and β should minimize the sum of squared errors as flows:

 $\min \sum_{i=1}^{n} \epsilon_{i}^{2}$. Letting $q = \sum_{i=1}^{n} \epsilon_{i}^{2}$ and

 $\frac{\partial q}{\partial \alpha} = 0$, $\frac{\partial q}{\partial \beta} = 0$ result in the normal equations

$$\sum_{i=1}^{n} y_i = n\hat{\alpha} + \hat{\beta} \sum_{i=1}^{n} x_i$$


$$\sum_{i=1}^{n} x_{i} y_{i} = \hat{\alpha} \sum_{i=1}^{n} x_{i} + \hat{\beta} \sum_{i=1}^{n} x_{i}^{2}$$

Solving two equations and two unknowns give:

$$\hat{\beta} = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} y_{i})(\sum_{i=1}^{n} x_{i})}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} = \frac{s_{XY}}{s_{XX}}; \quad \hat{\alpha} = \frac{(\sum_{i=1}^{n} y_{i})}{n} - \hat{\beta} \frac{(\sum_{i=1}^{n} x_{i})}{n} \Rightarrow \hat{\alpha} = \bar{y} - \hat{\beta} \bar{x}$$

Example: Simple Linear Regression Analysis

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

WEEK	Х*	Y*	X ²	Y ²	XY
1	1.3	10	1.69	100	13
2	2	6	4	36	12
3	1.7	5	2.89	25	8.5
4	1.5	12	2.25	144	18
5	1.6	10	2.56	100	16
6	1.2	15	1.44	225	18
7	1.6	5	2.56	25	8
8	1.4	12	1.96	144	16.8
9	1	17	1	289	17
10	1.1	20	1.21	400	22
sum	14.4	112	21.56	1488	149.3

* Thousand of gallons

Normal equation:

$$\sum y_{i} = n\hat{\beta}_{0} + \hat{\beta}_{1}\sum x_{i}$$

1120 = (10) $\hat{\beta}_{0} + 14.4\hat{\beta}_{1}$

$$S_{xx} = n \sum x^2 - (\sum x)^2 = (10)21.56 - (14.4)^2 = 8.24$$

$$S_{yy} = n \sum y^2 - (\sum y)^2 = (10)1488 - 112^2 = 2336$$

$$S_{xy} = n \sum xy - \sum x \sum y = (10)149 - (14.4)(112) = -119.8$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{(10)(149.3) - (14.4)112}{(10)(21.56) - (14.4)^2} = \frac{-119.8}{8.24} = -14.54$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta} \ \overline{x} = \frac{112}{10} - (-14.54)\frac{14.4}{10} = 32.14$$

Regression Equation:

 $\hat{y} = 32.14 - 14.54x$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{(10)149.3 - (14.4)112}{\sqrt{(10)21.56 - 14.4^2}\sqrt{(10)1488 - 112^2}} = -0.86$$

By using bivariate normal approach

$$E_{Y|x} = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1)$$

$$E_{Y|x} = 11.2 - 0.86 \frac{4.833}{0.827} (x - 1.44) = 32.05 - 14.48x$$

Standard error of estimate:

week		Actual	Estimated	Error	
	Х	Y	Y	е	e ²
1	1.3	10	13.238	-3.238	10.48464
2	2	6	3.06	2.94	8.6436
3	1.7	5	7.422	-2.422	5.866084
4	1.5	12	10.33	1.67	2.7889
5	1.6	10	8.876	1.124	1.263376
6	1.2	15	14.692	0.308	0.094864
7	1.6	5	8.876	-3.876	15.02338
8	1.4	12	11.784	0.216	0.046656
9	1	17	17.6	-0.6	0.36
10	1.1	20	16.146	3.854	14.85332
sum	14.4	112	112.024	0	59.42482

$$\hat{\sigma}_e = \sqrt{\frac{\sum error^2}{n-2}} = \sqrt{\frac{\sum (y-\hat{y})^2}{n-2}} = \sqrt{\frac{59.42}{8}} = 2.72$$

Predicting Y:

Suppose Mr. Bump wished to forecast the quantity of milk sold if the price were set at \$1.63.

$$\hat{y} = E_{Y|x=1.63} = 32.14 - (14.54)1.63 = 8.44$$
 or 8,440 gallons.

Standard error of the forecast measures when x=1.63 is

$$\sigma_p = \sigma_e \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2}} = 2.72 \sqrt{1 + \frac{1}{10} + \frac{(1.63 - 1.44)^2}{0.8240}} = 2.90$$

Then 95% prediction interval is

$$8.44 \pm t_{n-2, 0.025} 2.90 \implies 8.44 \pm 2.306(2.90) \implies (1.753, 15.121)$$

Inferences on β₁:

Standard error of estimator of β_1

$$\sigma_{\beta_1} = \frac{\sigma_e}{S_{xx}} = \frac{\sigma_e}{\sqrt{\sum (x - \bar{x})^2}} = \frac{2.72}{\sqrt{0.824}} = 3.00$$

The 95% confidence interval is:

$$-14,54 \pm t_{n-2,0.025}(3.00) \implies -14.54 \pm 6.918 \implies (-21.458, -7.622)$$

Hypothesis Testing

H₀:
$$\beta=0$$
 vs H₀: $\beta\neq 0$

$$t = \frac{-14.54 - 0}{3.00} = -4.8 < -2.306$$
 Reject Ho.

Chapter 2 Introduction to Time Series

Examples of Time Series

- 1. Economic Time Series: share prices on successive days, export totals on successive days, average incomes in successive months, company profits in successive years, Annual growth rate, Seasonal ice cream consumption, Weekly traffic volume
- 2. Physical Time Series: Meteorology, marine science and geophysics Hourly temperature readings, Rainfall in successive days, air temperature in successive hours, Electrical signals
- 3. Marketing Time series: Advertising expenditure in successive time periods, the analysis of sales figures in successive weeks/months
- 4. Process Control: to detect the changes in the performance of a manufacturing process by measuring variable which shows the quality of the process.
- 5. Binary process: Observations can take one of only two values, usually denoted by 0 and 1. Particularly in communication theory.
- 6. Point process: A series of events ocurring randomly in time. Dates of a major railway disasters. Distribution of the no. of events and the time intervals between events are concerned.
- 7. Demographic Time Series: in the study of population to predict the changes in population
- 8. Data in business, economics, engineering, environment, medicine, earth sciences, and other areas of scientific investigations are often collected in the form of time series, i.e. Daily stock prices

Objectives of Time Series

- 1. Description: to detect the data and to obtain simple descriptive measures, to detect outlers and adjust to its expected value, to detect turning points (i.e. upward trend suddenly changed to downward trend)
- 2. Explanation: the variation in one series to explain the variation in another series. Multiple linear regression and linear systems are useful
- 3. Prediction: Given the observed time series to predict future values of the values
- 4. Control the Process : control charts

2.1. Time Series Components

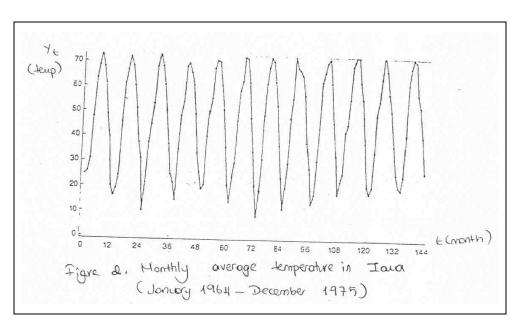
Definition: A Stochastic Process is a process that developes in time according to probabilistic laws. Let X_t a string of random variables, X_t is the observation at time t. We usually observe only one realization of a stochastic process over a finite period of time.

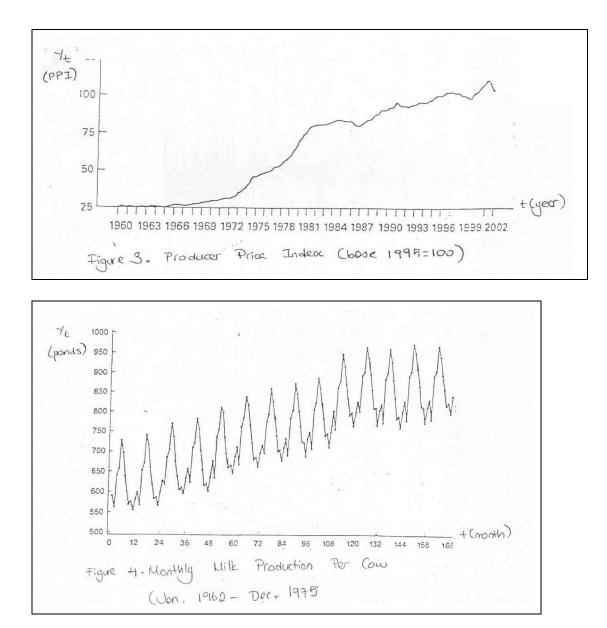
Definition: A Time Series is a set of observations generated sequentially in time. They are statistically dependent observations. It is a particular realization of Stochastic Processes. If t is continuous, we have continuous time series. If the realizations are taken at specific time points it is discrete type of time series.

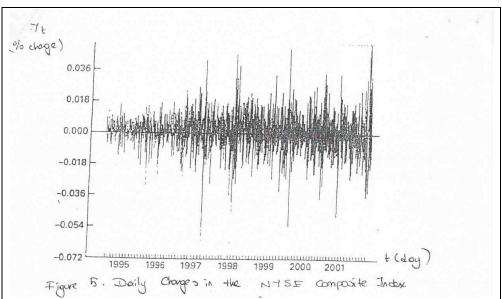
Types of variation

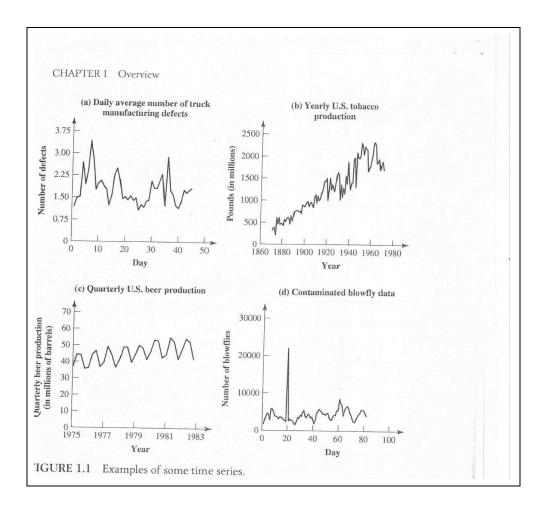
TS=TrendxSeasonalxCyclicalxIrregular

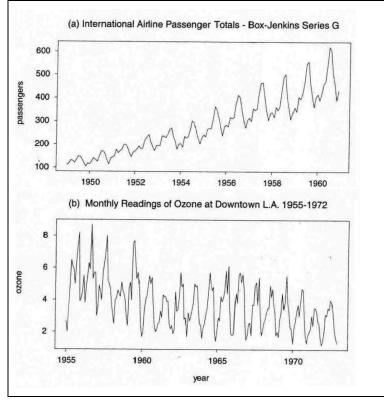
Seasonal: A pattern of change that repeats itself period after period.

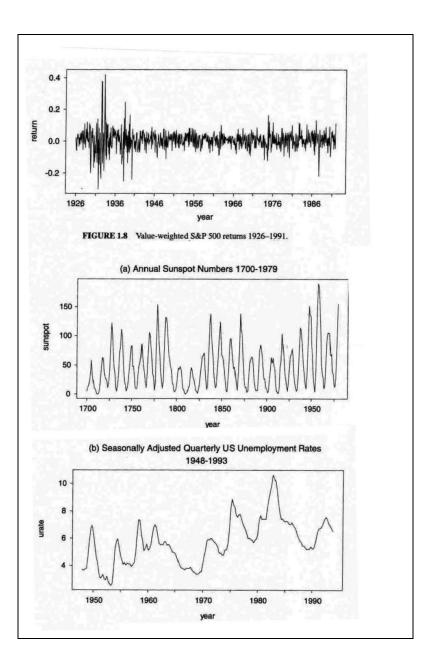

Cyclical: Variation at a fixed period due to some other physical cause. i.e. business cycles with a period of 5 and 7 years.


Trend: Lond-term change in the mean which represents the growth or decline in the time series over extended period of time


Irregular: Series of residuals. It measures the variability of the time series after the other components are removed.


Definition: Time Series is said to be stationary if there is no systematic change in mean (no trend), no systematic change in variance and if strictly periodic variations have ben removed.


Examples: The following graphs illustrate different series plotted against different time periods.



2.2. The steps in Time Series:

- Model Identification
 - Time Series plot of the series
 - Check for the existence of a trend or seasonality
 - Check for the sharp changes in behavior
 - Check for possible outliers
- Remove the trend and the seasonal component to get stationary residuals.
- Estimation
 - Method of Moments Estimation (MME)
 - Maximum Likelihood Estimation (MLE)
- Diagnostic Checking
 - Normality of error terms
 - Independency of error terms
 - Constant error variance (Homoscedasticity)
- Forecasting
 - Exponential smoothing methods
 - Minimum mean square error (MSE) forecasting

Transformation

The reasons to use transformation on data are to stabilize the variance, to make the seasonal effect additive and to make the data normally distirbuted. For example, when the standard deviation is proportional to the mean, logarithmic transformation is useful. If there is a trend in the series and the size of the seasonal effect appears to increase with the mean, transformation is required. If seasonal effect is directly proportional to the mean, seasonal effect is said to be multiplicative and logarithmic transformation is used.

There are three types of seasonal models: a. $X_t=\mu_t+S_t+\varepsilon_t$ additive model, no transformation is needed. b. $X_t=\mu_t S_t \varepsilon_t$ logarithmic transformation c. $X_t=\mu_t S_t+\varepsilon_t$ where μ_t is the mean; S_t is the seasonality effect and ε_t is the irregular effect

Analysing series which contain a trend

We measure the trend and/or remove the trend in order to analyze the fluctuations. With seasonal data start with calculating the successive yearly averages. The techniques used are polynomial fitting, difference filters.

1. Polynomial fitting such as a polynomial curve (linear, quadratic etc.), logistic function or Gompertz function etc.

Logistic function:

$$f(t) = \frac{a}{1 + be^{-ct}}; \quad t \in \mathbb{R}, a, b, c \in \mathbb{R} / 0$$
$$\lim_{t \to \infty} f_{\log}(t) = a \quad \text{if } c > 0$$

A resembles the maximum growth of the system.

Mitscherlich Curve

This function models the long term growth of a system.

$$f(t) = a + be^{-ct}; \quad t \ge 0, a, b \in \mathbb{R}, c < 0$$
$$\lim_{t \to \infty} f_{\log}(t) = a$$

where a is the saturation value of the system. The initial value of the system is f(t)=a+b.

Gompertz Function

To model the increas or decrease of the system.

$$f(t) = \exp a + bc^{t} ; \quad t \ge 0, a, b \in \mathbb{R}, c \in (0,1)$$
$$\log f(t) = a + be^{t \log c}$$

Allometric Function

Used commonly to model the trend function in biometry and economics.

 $f(t) = bt^{a}; \quad t \ge 0, a \in \mathbb{R}, b > 0$ log $f(t) = \log b + a \log t \rightarrow \text{Cobb-Douglas Function}$

Fitted function provides of the trend, and the esiduals provide an estimate of local fluctuations.

2. Linear Filters

Let $a_{-h}, a_{-h+1}, \dots, a_s$ be arbitrary numbers having h, $s \ge 0$, $h+s+1 \le n$. The linear

transformation $X_t = \sum_{i=-h}^{s} a_i X_{t-i}$; t = s+1,...,n-h, is linear filter with weights

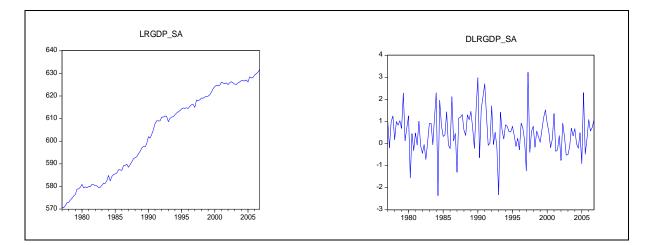
 $a_{-h}, a_{-h+1}, \dots, a_{s}$.

For $a_{-h}, a_{-h+1}, \dots, a_s$ satisfying the condition $\sum_{i=-h}^{s} a_i = 1$, then the process is called Moving

Average of order s.

Difference Filters

Lemma: For a polynomial $f(t) = a_0 + a_1t + ... + a_pt^p$ of degree p, the difference $\Delta f(t) = f(t) - f(t-1) = (a_0 + a_1t + ... + a_pt^p) - (a_0 + a_1(t-1) + ... + a_p(t-1)^p)$ is a polynomial of degree at most p-1.


For a linear filter $\Delta X_t = X_t - X_{t-1}$ of order 1.

$$\Delta^2 X_t = \Delta(\Delta X_t) = \Delta X_t - \Delta X_{t-1} = X_t - 2X_{t-1} + X_{t-2} \text{ of order 2.}$$

 $\Delta^p X_t = \Delta(\Delta^{p-1}X_t)$ of order p.

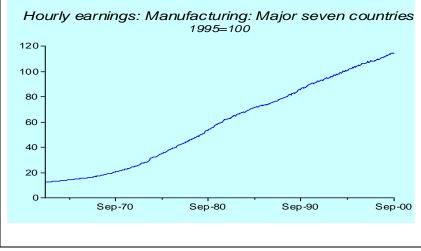
If a time series has a polynomial trend of order p, then the difference filter of order p removes the trend up to a constant.

Example: The series having an upward trend (left) is detrended by taking the difference once (p=1) (plot given on the right)

Backward shift Operator (B or L)

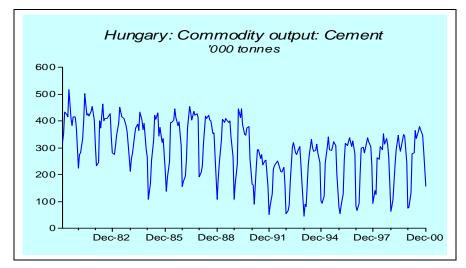
$$\begin{split} X_{t-1} &= BX_t, \qquad X_{t-2} = B^2 X_t, \\ \Delta^2 X_t &= \Delta (\Delta X_t) = \Delta X_t - \Delta X_{t-1} = X_t - 2X_{t-1} + X_{t-2} = (1 - 2B - B^2) X_t = (1 - B)^2 X_t \\ \Delta^d X_t &= (1 - B)^d X_t \end{split}$$

Chapter 3 Classical Time Series Modeling

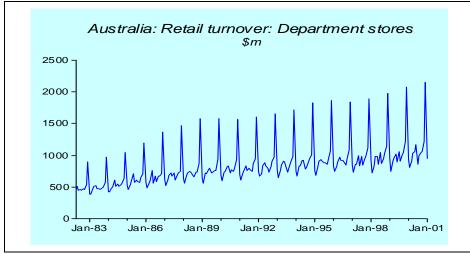

According to classical time-series analysis an observed time series is the combination of some pattern and random variations. The aim is to separate them from each other in order to describe to historical pattern in the data, and to prepare forecasts by projecting the revealed historical pattern into the future. Traditionally, there are two types of methods for identifying the pattern. (i). Smoothing: The random fluctuations are removed from the data by smoothing the time series.(ii).Decomposition: The time series is broken into its components and the pattern is the combination of the systematic parts.

The pattern itself is likely to contain some, or all, of the following three components: trend, seasonal and cyclical.

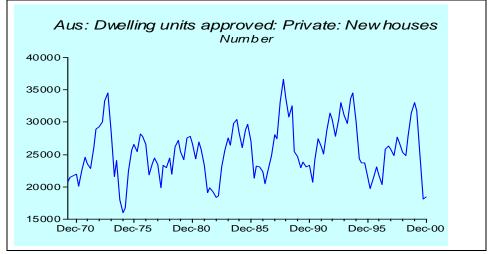
Trend: The long-term general change in the level of the data with a duration of longer than a year. it can be linear (straight line) or non-linear (smooth curve), like e.g. exponential, quadratic.

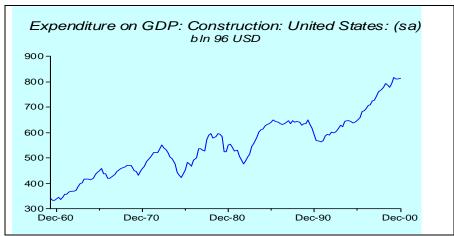

Seasonal variations: Regular wavelike fluctuations of constant length, repeating themselves within a period of no longer than a year. Seasonal variations are usually associated with the four seasons of the year, but they may also refer to any systematic pattern that occurs during a month, a week or even a single day.

Cyclical variations: Wavelike movements, quasi regular fluctuations around the long-term trend, lasting longer than a year.



Some examples to illustrate these patterns are given in the following figures as follows:


a. Hourly earnings of manufacturing in major seven countries


b. Quarterly amount of Cement as commodity output for Hungary between1991-2000

c. Monthly Retail turnover for Australia between 1983-2001

d. Number of new houses approved in Australia (1970-2000)

e. Construction expenditure in USA (1960-2000)

Figure 3.1: Figures a-e are the examples to the components of a time series data (source: Selvanathan et al. 2004)

The time period between the beginning trough and the peak is called expansion phase, while the period between the peak and the ending trough is termed contraction phase. Cyclical variations are often attributed to business cycles, i.e. to the ups and downs in the general level of business activity. Seasonal and cyclical variations might be very similar in their appearance. However, while seasonal variations are absolutely regular and occur over calendar periods no longer than a year, cyclical variations might and do change both in their intensity (amplitude) and duration, and they last longer than a year. It is far more difficult to study and predict the cyclical component than the seasonal component.

The random variations of the data comprise the deviations of the observed time series from the underlying pattern. When this irregular component is strong compared to the (quasi-) regular components, it tends to hide the seasonal and cyclical variations, and it is difficult to be detached from the pattern. However, if we manage to capture the trend, the seasonal and cyclical variations, the remaining changes do not have any discernible pattern, so they are totally unpredictable.

The four components of a time series (T: trend, S: seasonal, C: cyclical, R: random) can be combined in different ways. Accordingly, the time series model used to describe the observed data (Y) can be either

Additive $Y_t = T_t + S_t + C_t + R_t$, or Multiplicative: $Y_t = T_t \times S_t \times C_t \times R_t$

For example, if the trend is linear, these two models look as follows:

 $Y_t = (a+bt) + S_t + C_t + R_t \qquad Y_t = (a+bt) \times S_t \times C_t \times R_t$

In an additive model the seasonal, cyclical and random variations are absolute deviations from the trend. They do not depend on the level of the trend, whereas in a multiplicative model the seasonal, cyclical and random variations are relative (percentage) deviations from the trend. The higher the trend, the more intensive these variations are.

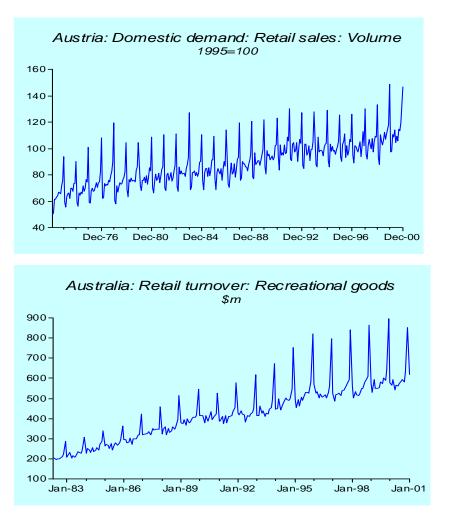


Figure 3.2: Examples to the additive and multiplicative time series (Source: Selvanathan et al. 2004)

These time series have an increasing linear trend component, but the fluctuations around this trend (the first figure above) have the same intensity; the fluctuations around this trend (the second above) are more and more intensive. Though in practice the multiplicative model is the more popular, both models have their own merits and, depending on the nature of the time series to be analysed, they are equally acceptable.

3.1. Smoothing Techniques

They are used to remove, or at least reduce, the random fluctuations in a time series so as to more clearly expose the existence of the other components. There are two types of smoothing methods: (i) **Moving averages:** A moving average for a given time period is the (arithmetic) average of the values in that time period and those close to it. (ii) **Exponential Smoothing:** The exponentially smoothed value for a given time period is the weighted average of all the available values up to that period.

Example: Moving Average

Given the sales per day in the following table,

Day	Sales	3-day moving	3-day moving
		sum	average
1	43		
2	45	110.0	36.7
3	22	92.0	30.7
4	25	78.0	26.0
5	31	107.0	35.7
6	51	etc.	etc.

Figure 3.3: Plots of original, MA(3) and MA(5) series

3-day Moving averages (MA(3)) and 5-day Moving averages (MA(5)) are given in Figure 3.3. In this figure blue diamond, red dots and green triangles represent the original, MA(3) and MA(5) series, respectively. This figure suggests that the longer the moving average period the stronger the smoothing effect, the shorter the smoothed series. When the moving average period is relatively large, along with the random variations, the seasonal and cyclical variations are also removed and only the long-term trend can be revealed.

Exponential Smoothing

Let St : exponentially smoothed value for time period t ;

 $S_t = wY_t + (1 - w)S_{t-1}$

where

 S_{t-1} : exponentially smoothed value for time period t -1;

 Y_t : observed value for time period t ;

w : smoothing constant, 0 < w < 1.

Note: Assuming that Y has been observed from t = 1, this formula can be applied only from the second time period. For t = 1 we set the smoothed value equal to the observed value, i.e. $S_1 = Y_1$. The smoothing constant determines the strength of smoothing, the larger the value of w the weaker the smoothing effect.

The formula for the exponentially smoothed series can be expanded as follows:

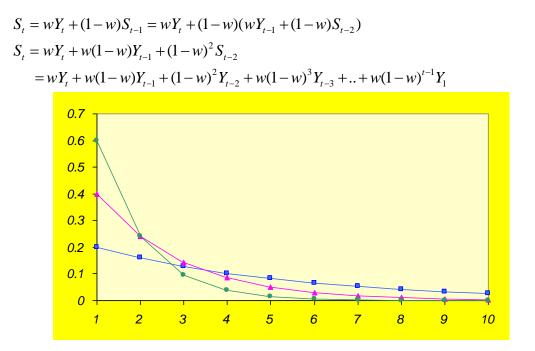


Figure 3.4. The impact of the value of w on convergence

The exponentially smoothed value for period t depends on all available observations from the first period through period t, but the weights assigned to past observations, w(1-w) decline geometrically with the age of the observations (Figure 3.4). Beyond a certain age the observations do not really count since they do not have measurable effects on the exponentially smoothed value.

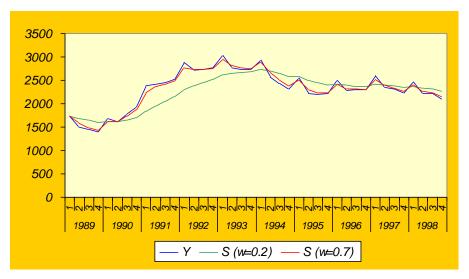


Figure 3.5. Exponentially smoothed series for different w.

Figure 3.4 shows that if w = 0.2, $w(1-w)^t$ approaches zero relatively slowly and even $w(1-w)^{10}$ is substantial. On the other hand, if w = 0.6, $w(1-w)^t$ approaches zero much faster and at t = 6 it is already negligible.

		Y	S (w=0.2)	S (w=0.7)
1989	1	1735.6	1735.6	1735.6
	2	1507.9	1690.1	1576.2
	3	1450.2	1642.1	1488.0
	4	1402.7	1594.2	1428.3
1990	1	1689.9	1613.3	1611.4
	2	1621.4	1615.0	1618.4
		etc.	etc.	etc.

$$S_2 = wY_2 + (1 - w)S_1 = 0.2x1507.9 + 0.8x1735.6 = 1690.1$$

$$S_3 = wY_3 + (1 - w)S_2 = 0.2x1450.2 + 0.8x1690.1 = 1642.1$$

for w = 0.7, S_t is quite similar to Y_t , i.e. there is very little smoothing. However, if w = 0.2, S_t does not have the seasonal pattern of Y_t , i.e. there is far more smoothing.

3.2 Capturing the Components

Smoothing procedures are used to facilitate the identification of the systematic components of the time series. If we manage to decompose the time series into the trend, seasonal and cyclical components, then we can construct a forecast by projecting these parts into the future.

Trend analysis: The easiest way of isolating a long-term linear trend is by simple linear regression, where the independent variable is the t time variable.

 $Y_t = \beta_0 + \beta_1 t + \varepsilon_t$ and t is equal to 1 for the first time period in the sample and increases by

one each period thereafter. After having created this variable, this linear time trend model can be estimated as any other simple linear regression model. It should be noted that this model is not appropriate if the trend is likely to be non-linear.

Example: The graph below shows exports of footwear (m) from 1988 through 2000. This time series has an upward trend, which is perhaps linear perhaps not. We fit first a linear regression model to the data and test the significance if the model is appropriate. To estimate a linear trend line, first you have to create a time variable *t* and then regress *fwexport* on *t*.

1988	1	14
1989	2	23
1990	3	22
1991	4	30
1992	5	36
1993	etc	etc

 $\hat{y} = 15.308 + 4.505t$

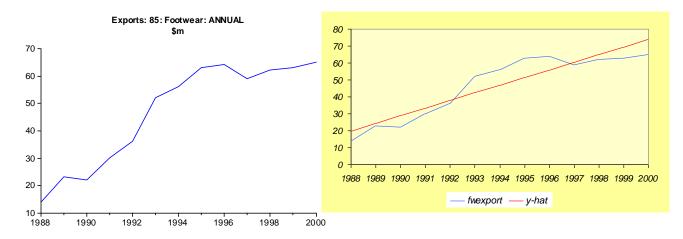


Figure 3.6: The plot of the original series and the trend analysis

Therefore, for example, in 1988 (t = 1) it is and in 1999 (t = 12) it is $\hat{y} = 15.308 + 4.505 \times 1 = 19.813$ \$m $\hat{y} = 15.308 + 4.505 \times 12 = 69.368$ \$m

Measuring the cyclical effect

Assume that the time series model is multiplicative and consists of only two parts: the trend and the cyclical components so that

 $Y_t = T_t x C_t \rightarrow C_t = \frac{Y_t}{T_t}$. Under these assumptions the cyclical effect can be measured by

expressing the actual data as the percentage of the trend: $\frac{Y_t}{\hat{Y}_t} \times 100$.

Example continued: Calculate and plot the percentage of trend.

year	t	fwexport	y-hat	y/y-hat*100
1988	1	14	19,81	70,66
1989	2	23	24,32	94,58
1990	3	22	28,82	76,32
1991	4	30	33,33	90,01
1992	5	etc.	etc.	etc.

So in 1988 the actual exports of footwear were about 29% below the trend line.

<u>Note</u>: We have assumed that the time series pattern does not have a seasonal component and that the random variations are negligible. The first of these assumptions is certainly satisfied since the data is annual. However, when these assumptions are invalid, we should remove the seasonal and random variations before attempting to identify the trend and cyclical components.

Measuring the seasonal effect

Depending on the nature of the time series, the seasonal variations can be captured in different ways.

i. Assume, for example, that the time series does not contain a discernible cyclical component and can be described by the following multiplicative model

$$Y_t = T_t x S_t x R_t \to \frac{Y_t}{T_t} = S_t x R$$

This suggests that dividing the estimated trend component (\hat{Y}) into the time series we obtain an estimate for the product of the seasonal and random variations.

Seasonal Factor: $\frac{Y_t}{\hat{Y}_t} \times 100$. In order to remove the random variations from this ratio, we

average the seasonal factors for each season and adjust these averages to ensure that they add up to the number of seasons. This can be achieved by seasonal indices.

Example: The graph below shows retail turnover for households goods (\$m) from the second quarter of 1982 through the fourth quarter of 2000.

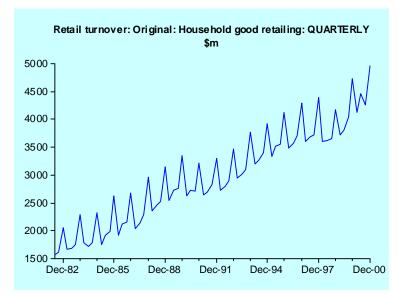


Figure 3.7 Quarterly retail turnover on household good retailing (1982-2000)

This time series has an upward linear trend and quarterly seasonal variations. It probably has some cyclical variations too, but this third component seems to be less significant than the other two. Estimated trend line is

$$\hat{y} = 1589.189 + 36.604t$$

We estimate seasonal factors and the indices:

quarter	t	retail	y-hat	y/y-hat
Jun-82	1	1553.2	1625.8	0.955
Sep-82	2	1601.9	1662.4	0.964
Dec-82	3	2052.2	1699.0	1.208
Mar-83	4	1666.0	1735.6	0.960
Jun-83	5	1680.4	1772.2	0.948

In order to find the seasonal indices the seasonal factors (Y/\hat{Y}) have to be grouped, averaged and, if necessary, adjusted.

Year	Q1	Q2	Q3	Q4	
1982		0.955	0.964	1.208	
1983	0.960	0.948	0.962	1.240	
1984	0.948	0.890	0.905	1.163	
etc.	etc.	etc.	etc.	etc.	
1998	0.914	0.908	0.909	1.031	
1999	0.909	0.922	0.971	1.129	
2000	0.973	1.043	0.990	1.144	
Sum	16.728	18.062	18.283	21.945	Total
Average	0.929	0.951	0.962	1.155	3.997
Index	0.930	0.951	0.963	1.156	4.000
I _{Mar}	= 93.0%		$I_{Sep} = 96.3$	<mark>%</mark>	
		$I_{Jun} = 95.$	<mark>1%</mark>	$I_{Dec} = 11$	<mark>5.6%</mark>
	1982 1983 1984 etc. 1998 1999 2000 Sum Average Index	1982 1983 0.960 1984 0.948 etc. etc. 1998 0.914 1999 0.909 2000 0.973 Sum 16.728 Average 0.929	1982 0.955 1983 0.960 0.948 1984 0.948 0.890 etc. etc. etc. 1998 0.914 0.908 1999 0.909 0.922 2000 0.973 1.043 Sum 16.728 18.062 Average 0.929 0.951 Index 0.930 0.951	1982 0.955 0.964 1983 0.960 0.948 0.962 1984 0.948 0.890 0.905 etc. etc. etc. etc. 1998 0.914 0.908 0.909 1999 0.909 0.922 0.971 2000 0.973 1.043 0.990 Sum 16.728 18.062 18.283 Average 0.929 0.951 0.962 Index 0.930 0.951 0.963	19820.9550.9641.20819830.9600.9480.9621.24019840.9480.8900.9051.163etc.etc.etc.etc.etc.19980.9140.9080.9091.03119990.9090.9220.9711.12920000.9731.0430.9901.144Sum16.72818.06218.28321.945Average0.9290.9510.9621.155Index0.9300.9510.9631.156 $I_{Mar} = 93.0\%$ $I_{Sep} = 96.3\%$

These seasonal indices suggest that in the March, June and September quarters retail turnover is expected to be 7.0, 4.9 and 3.7% below its trend value, while in the December quarter retail turnover is expected to be 15.6% above its trend value.

ii. When the time series model is multiplicative and has all four parts, i.e. a trend, a cyclical component, a seasonal component and random variations,

$$Y_t = T_t x C_t x S_t x R_t \longrightarrow \frac{Y_t}{CMA_t} = \frac{Y_t}{T_t x C_t} = S_t x R_t$$

the data is first divided by (centered) moving averages, which are supposed to capture the trend and cyclical components, then the seasonal factors and indices are calculated from these ratio-to-moving averages and the trend and cyclical components are estimated from the centered moving averages, instead of the original data.

<u>Note</u>: The order of the centered moving average must be equal to the number of seasons. For example, we use 4-quarter CMA if the data is quarterly and seasonality has 4 phases a year, and we use 12-month CMA if the data is monthly and seasonality has 12 phases a year.

Example continued: Re-estimate the seasonal component using the ratio-to-moving average instead of the original data.

quarter	t	retail	cmo(4)
quarter	l		cma(4)
Jun-82	1	1553.2	MISSING
Sep-82	2	1601.9	MISSING
Dec-82	3	2052.2	1734.2
Mar-83	4	1666.0	1767.3
Jun-83	5	1680.4	1814.0
Sep-83	6	etc.	etc.

Following the same steps than in part (b) we get the following seasonal indices: $I_{March}=93\%$, $I_{June}=94.8\%$, $I_{Sept.}=96.5\%$, $I_{Dec}=115.7\%$.

This time there is not much difference between the indices computed from the original data and the indices computed from the centered moving averages. The seasonal indices can be used to deseasonalise a time series, i.e. to remove the seasonal variations from the data. The seasonally adjusted data (in publications usually denoted as sa) is obtained by dividing the observed, unadjusted data by the seasonal indices.

For example: For the June quarter of 1982 the seasonally adjusted retail turnover is

 $1553.2/94.8 \times 100 = 1638.2$ \$m

3.3 Forecasting

After having studied the historical pattern of a time series, if there is reason to believe that the most important features of the variable do not change in the future, we can project the revealed pattern into the future in order to develop forecasts.

If a time series exhibits no (or hardly any) trend, cyclical and seasonal variations, exponential smoothing can provide a useful forecast for one period ahead: $F_{t+1} = S_t$

Example: Assume that exponential smoothing with w = 0.2 and w = 0.7 on quarterly Australian unemployed persons (in thousands) is applied. Since this time series does have some seasonal variations, exponential smoothing cannot be expected to forecast unemployment reasonably well. Nevertheless, just for illustration, let us forecast unemployment for the first quarter of 1999.

		unemployed	S (w=0.7)
1998	1	2461,4	2402,8
	2	2210,9	2268,5
	3	2221,3	2235,5
	4	2102,6	2142,5

This is the smoothed value for the fourth quarter of 1998, and thus the forecast for the first quarter of 1999.

If a time series exhibits a long-term (linear) trend and seasonal variations, we can use regression analysis to develop forecasts in two different ways.

1. We can forecast using the estimated trend and seasonal indices as:

 $F_t = T_t \times S_t = (\hat{\beta}_0 + \hat{\beta}_1 t) \times I_t$

2. Alternatively, we can forecast using the estimated multiple regression model with a time variable and seasonal dummy variables.

Example: Forecast retail turnover for households goods for the first quarter of 2001 applying the first approach can be implemented as follows.

Obtain the trend estimate from part *a* and the March seasonal index from part *b* so that t = 76, $I_{76} = IMar = 0.930$ and $\hat{y} = 1589.189 + 36.604t$

$$F_{76} = \hat{y}_{76} = (1589.2 + 36.6 \times 76) \times 0.930 = 4064.8$$

We have predicted retail turnover for households goods for the first quarter of 2001. Suppose we had another forecast value of 4203.4 for the same data and the same time period using a different forecasting model. How would we decide which forecast is more accurate? However, this does not imply by any means that Model 2 would produce more accurate forecast for all time periods than Model 1.

How can we decide which forecasting model is the most accurate in a given situation?

Forecast the variable of interest for a number of time periods using alternative models and evaluate some measure(s) of forecast accuracy for each of these models. Among a number of possible criteria that can be used for this purpose the two most commonly used are mean absolute devition (MAD) and Sum of squares of forecast error (SSFE). These are as follows:

$$MAD = \frac{1}{n} \sum_{t=1}^{n} \left| y_t - F_t \right|$$

$$SSFE = \frac{1}{n} \sum_{t=1}^{n} y_t - F_t^{2}$$

Example: Based on the example above two models are proposed. The forecasts with respect to the actual values are compared and MAD, SSFE are calculated as follows:

Actual	Forecats		error		Squared error		
Value	Model1	Model 2	Model1	Model 2	Model1	Model 2	
6.0	7.5	6.3	-1.5	-0.3	2.25	0.09	
6.6	6.3	6.7	0.3	-0.1	0.09	0.01	
7.3	5.4	7.1	1.9	0.2	3.61	0.04	
9.4	8.2	7.5 1.2		1.9	1.44	3.61	
					7.39	3.75	
Model 1 : $MAD = 4.9/4 = 1.225$ and $SSFE = 7.39/4 = 1.847$						39/4=1.847	
Model 2	2: MA	D = 2.5/4	=0.625	and	SSFE = 3.7	75/4=0.9375	

According to both criteria Model 2 is the more accurate.

Exercises (Assignment 1)

1. Given the data below and Excel

- a. Plot the series and comment on the possible components it might have.
- b. Find the smoothed series by using 4-weekMoving Average technique plot the series.
- c. Apply exponential smoothing technique with w=0.3
- d. Decompose the series into its components and calculate the seasonal indices for every quarters
- e. Predict the amount of shipments for the second quarter of 1989.

Year	Quarter	Private	Trend	Year	Quarter	Private	Trend
		Residential				Residential	
		investments				investments	
		(billions				(billions	
		dollar)				dollar)	
1980	1	34.2	38.5	1983	1	63.8	47.2
	2	34.3	39.2		2	62.3	47.9
	3	37.7	39.9		3	48.2	48.6
	4	42.5	40.6		4	42.2	49.4
1981	1	43.1	41.4	1984	1	51.2	50.1
	2	42.7	42.1		2	60.7	50.8
	3	38.2	42.8		3	62.4	51.5
	4	37.1	43.5		4	59.1	52.3
1982	1	43.1	44.3	1985	1	47.1	53.0
	2	43.6	45.0		2	44.7	53.7
	3	41	45.7		3	37.8	54.4
	4	53.7	46.4		4	52.7	55.2

2.The following data provide the unemployment rates during 10 years from 1990 to 1999 together with an index of industrial production from Federal Reserve Board.

Year, X2	Unemployment, Y	Index of production, X1
1990	3.1	113
1991	1.9	123
1992	1.7	127
1993	1.6	138
1994	3.2	130
1995	2.7	146
1996	2.6	151
1997	2.9	152
1998	4.7	141
1999	3.8	159

Fit a multiple regression model by using software to express the change in unemployment in terms of year and the index of production.

Chapter 4 Stochastic Time Series Modeling

4.1 Stationary Models

1. Strictly stationary process: If the joint dist. of $(X_{t1}, ..., X_m)$ is the same as the joint distribution of $(X_{t1+h}, ..., X_{m+h})$

2. Weak stationary process: $\{X_t\}$ is weakly stationary (second-order stationary) if

- i) $\mu_x(t) = E(X_t)$ is independent of t.
- ii) $Cov(X_r, X_s) = \gamma_x(r, s) = E[(X_r \mu_x(r))(X_s \mu_x(s))]$ is independent of t for each h.

Autocovariance (ACVF) Function

Let $\{X_i\}$ be a stationary time series with $E(X_i) = \mu$ and $V(X_i) = \sigma^2$. Autocovariance Function of the series is

$$\gamma(h) = Cov(X_{t+h}, X_t)$$

= $E \left[X_{t+h} - E[X_{t+h}] \right] (X_t - E[X_t]] = E \left[X_{t+h} - \mu_{t+k} \right] (X_t - \mu_t] = E \left[X_{t+h} X_t \right] - \mu_{t+h} \mu_t$
i.e. for t = 1,2,3,... $\gamma(h) = Cov(X_{1+h}, X_1) = Cov(X_{2+h}, X_2) = Cov(X_{3+h}, X_3) = ...$

$$\gamma(0) = Var[X_t] = \sigma_t^2$$

Auto-correlation (ACF) Function is $\rho(h) = \frac{\gamma_x(h)}{\gamma_x(0)} = \frac{C \operatorname{ov}(X_{t+h}, X_t)}{Var(X_t)}$

Autocorrrelation (ACF) Function measures the dependency between variables in a series.

$$\rho(h) = \frac{\gamma_x(h)}{\gamma_x(0)} = \frac{C \operatorname{ov}(X_{t+h}, X_t)}{Var(X_t)}$$

Remark: For a weak stationary time series, mean is constant and covariance depends only on lag.

Properties:

1. ACF is an even function of the lag $\rho(h) = \rho(-h)$

Proof:

$$\gamma(-h) = Cov(X_{t-h}, X_t)$$

$$= E \left[\mathbf{k}_{t-h} X_t \right] + \mu_{t-h} \mu_t \text{ by symme tricity}$$

$$= E \left[\mathbf{k}_{t+h} X_t \right] + \mu_{t+h} \mu = \gamma(h)$$
2. $\left| \rho(h) \right| \le 1$

<u>Proof:</u> Consider the linear function $a_1X_i + a_2X_{i+h}$ where a_i 's, i=1,2 are any constants. By

the property of variance $Var[a_1X_t + a_2X_{t+h}] \ge 0$

$$Var[a_{1}X_{t}] + Var[a_{2}X_{t+h}] + 2a_{1}a_{2}Cov[X_{t}, X_{t+h}] \ge 0$$

$$a_{1}^{2}Var[X_{t}] + a_{2}^{2}Var[X_{t+h}] + 2a_{1}a_{2}\gamma(h) \ge 0$$

$$Var[X_{t}](a_{1}^{2} + a_{2}^{2}) + 2a_{1}a_{2}\gamma(h) \ge 0$$

If
$$a_1 = a_2 = 1$$
, $\gamma(h) \ge -Var[X_t] \Longrightarrow \frac{\gamma(h)}{Var[X_t]} \ge -1$

If
$$a_1 = a_2 = -1$$
, $\gamma(h) \le Var[X_t] \Longrightarrow \frac{\gamma(h)}{Var[X_t]} \le 1$

Sample Autocovariance and Autocorrelation Function:

Let $x_1, x_2, ..., x_n$ be observations of a series. Given the sample mean is $\overline{X} = \frac{1}{n} \sum_{t=1}^n x_t$, the

sample autocovariance function $\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{X})(x_t - \overline{X})$ and the sample

autocorrelation function $\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$ -n < h < n where

$$\hat{\rho}(h) = \frac{\sum_{allt} (x_t - \overline{x})(x_{t+h} - \overline{x})}{\sum_{allt} (x_t - \overline{x})^2} = \frac{\sum_{allt} (x_t x_{t+h}) - \sum_{allt} x_t \sum_{allt} x_{t+h}}{\sum_{allt} x_t^2 - (\sum_{allt} x_t)^2}$$

Lemma: For standard normally distributed data, i.e. if $\{X_i\}$ independent and identically distributed, N (0,1), then sampling distribution of $\hat{\rho}(h) \sim N(0, \frac{1}{n})$.

Correlogram is an aid to interpret a set of ACF where $\hat{\rho}(h)$, sample autocorrelations are

plotted against lag h.

Remarks:

For data containing trend $|\hat{\rho}(h)|$ will exhibit slow decay as h increases. For data with a periodic component $|\hat{\rho}(h)|$ will exhibit similar behavior with the same periodicity. If the series is random then for large n, $\hat{\rho}(h) \approx 0$ and $\hat{\rho}_k \sim N(0, \frac{1}{n})$. This leads us to find a 95% confidence interval for the population correlation coefficient. Therefore, we can conclude that if 95% of $\hat{\rho}(h)$ values lie within $\mp \frac{2}{\sqrt{n}} \Rightarrow$ time series is random.

When there exists a short-term correlation, fairly large value of $\hat{\rho}(1)$ is followed by 2 or more coefficients which is significantly smaller than zero, tend to get successively smaller and $\hat{\rho}(h)$ gets to zero for large h. In alternating series correlogram also tends to alternate.

For a non-stationary series: If the series contains a trend, $\hat{\rho}(h)$ values will not come down to zero except very large h. Trend should be removed first. In seasonal fluctuations: Correlogram exhibit an oscillation at the same frequency. If X_t follows a sinusoidal pattern, then so does $\hat{\rho}(h)$.

Tests of serial correlation

Durbin Watson statistic (DW)

DW is used to detect the serial correlation in error process. It is an informative statistics for the regression estimations. The test statistics in Durbin Watson is

$$DW = \frac{\sum_{t=2}^{n} (\varepsilon_t - \varepsilon_{t-1})^2}{\sum_{t=1}^{n} \varepsilon_t^2}$$
 where ε_t is the residual from the estimated equation. It can be shown

that DW \approx 2-2 ρ where ρ is the first order serial correlation coefficient. When there is no serial correlation, ρ =0 and DW statistic takes a value close to 2. Positive serial correlation produces a DW<2, while negative serial correlation produces a DW>2. This test can also be generalized to tests of higher orders.

Portmanteau Test:

An important source of information in detecting the presence and form of serial correlation

is the correlogram. Qualitative examination of the correlogram is an important diagnostic tool but it does not constitute a formal statistical test. The Box-Pierce and its related test the Ljung-Box test are both portmanteu tests which allow us to test the hypothesis that the first h points in the correlogram are random with a true value of zero.

Box-Pierce test statistics is defined as $Q = n \sum_{i=1}^{h} \hat{\rho}_i^2$

Q is asymptotically distributed as Chi-square distribution with degrees of freedom being h. A modified sample statistics is Ljung-Box statistics is

$$Q^* = n(n+2)\sum_{i=1}^{h} \frac{1}{(n-i)^i} \hat{\rho}_i^2.$$

 Q^* is also distributed Chi-square with degrees of freedom of h. Under the null hypothesis of no serial correlation, large Q or Q^* value indicates the presence of serial correlation.

Example: Given the table below choose the best fitting model.

р	q	$\hat{\sigma}^2$	SIC	AIC
0	1	1.033	-9.149	-8.155
0	2	0.962	-9.191	-8.215
0	3	0.955	-9.169	-8.210
2	0	0.984	-9.168	-8.191
3	0	0.973	-9.149	-8.177
3	1	0.971	-9.122	-8.181
1	2	0.964	-9.158	-8.20

Based on the AIC and SIC values the model chosen is ARIMA(0,1,2)

Example: Determine which of the series whose corrlograms are given beow, do have serial correlation.

Autocorrelation Partial	• E · 2 • I · 3 • I · 4 • E · 5 • E · 7 I · 7 II · 12 • I · 11 II · 12 • I · 12 • I · 15 • I · 16 • I · 16 • I · 18 • I · 18	-0.046 0.156 -0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.064 0.145 -0.250 -0.086 -0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.044 -0.065 0.029 0.001 -0.096	23.754 25.291 25.330 25.549 29.281 30.813	0.108 0.234 0.081 0.001 0.002 0.004 0.008 0.004 0.007 0.019 0.022 0.021 0.021 0.043 0.022	A																																																																																																																																																																																																																																																																																	
	1 2 3 3 1 4 1 5 1 7 1 7 1 10 1 12 1 12 1 12 1 14 1 12 1 15 1 16 1 16 1 17 1 18 1 18 1 18 1 19	-0.046 0.156 -0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.064 0.145 -0.250 -0.086 -0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.044 -0.065 0.029 0.001 -0.096	2.9089 6.7181 18.702 18.877 18.888 19.215 22.472 22.645 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.234 0.081 0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
	3 4 5 1 5 1 1 1 <tr <="" td=""><td>0.156 -0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094</td><td>0.145 -0.250 -0.086 -0.054 -0.226 -0.119 -0.057 -0.017 -0.019 -0.015 0.029 0.001 -0.096</td><td>6.7181 18.702 18.877 18.888 19.215 22.472 22.645 22.782 23.754 25.291 25.529 25.549 29.281 30.813</td><td>0.081 0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td></td><td>Image: 1 4 Image: 1 5 Image: 1 7 Image: 1 12 Image: 1 14 Image: 1 15 Image: 1 16 Image: 1 17 Image: 1 18 Image: 1 19</td><td>-0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.250 -0.086 -0.054 -0.226 -0.119 -0.057 -0.017 -0.019 -0.014 -0.065 0.029 0.001 -0.096</td><td>18.702 18.877 18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td></td><td>•E • 5 • • 6 • • 7 • • 7 • • 7 • • 10 • • 11 • • 12 • • 13 • • 13 • • 15 • • 16 • • 16 • • 17 • • 18 • • 19</td><td>-0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.086 -0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.014 -0.065 0.029 0.001 -0.096</td><td>18.877 18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td></td><td></td><td>0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td>· [· · · · · · · · · · · · · · · · · ·</td><td>- - -<td>-0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></td></tr> <tr><td>· [· · · · · · · · · · · · · · · · · ·</td><td>Image: Second second</td><td>-0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td>· [· · · · · · · · · · · · · · · · · ·</td><td>Image: 100 minipage 9 Image: 100 minipage 11 Image: 120 minipage 12 Image: 120 minipage 12 Image: 120 minipage 13 Image: 120 minipage 14 Image: 120 minipage 15 Image: 120 minipage 16 Image: 120 minipage 16 Image: 120 minipage 17 Image: 120 minipage 18 Image: 120 minipage 19</td><td>-0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td>· [·</td><td>I I 10 I I 11 I I 12 I I 13 I I 13 I I 14 I I 15 I I 16 I I 17 I I 18 I I 19</td><td>0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.012 0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td>· [· · · · · · · · · · · · · · · · · ·</td><td>1 11 1 12 1 13 1 13 1 14 1 15 1 16 1 17 1 17 1 18 1 19</td><td>-0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>22.782 23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.019 0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td>· [· · · · · · · · · · · · · · · · · ·</td><td>Image: 12 12 Image: 13 13 Image: 14 13 Image: 14 14 Image: 15 15 Image: 16 16 Image: 16 17 Image: 17 18 Image: 17 19</td><td>-0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.219 -0.014 -0.065 0.029 0.001 -0.096</td><td>23.754 25.291 25.330 25.549 29.281 30.813</td><td>0.022 0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td></td><td>13 14 14 15 16 16 17 17 18 19</td><td>0.096 -0.015 0.036 0.148 -0.094 0.040</td><td>-0.014 -0.065 0.029 0.001 -0.096</td><td>25.291 25.330 25.549 29.281 30.813</td><td>0.021 0.031 0.043 0.022</td><td></td><td></td></tr> <tr><td></td><td>14 1 15 1 16 10 11 16 17 17 17 18 19</td><td>-0.015 0.036 0.148 -0.094 0.040</td><td>-0.065 0.029 0.001 -0.096</td><td>25.330 25.549 29.281 30.813</td><td>0.031 0.043 0.022</td><td></td><td>1000</td></tr> <tr><td></td><td>1 15 1 16 1 17 1 18 1 19</td><td>0.036 0.148 -0.094 0.040</td><td>0.029 0.001 -0.096</td><td>25.549 29.281 30.813</td><td>0.043 0.022</td><td></td><td>1000</td></tr> <tr><td></td><td>1 16 1≣ 1 17 1 1 18 1 1 19</td><td>0.148 -0.094 0.040</td><td>0.001</td><td>29.281 30.813</td><td>0.022</td><td></td><td></td></tr> <tr><td></td><td>17 11 18 19</td><td>-0.094 0.040</td><td>-0.096</td><td>30.813</td><td></td><td></td><td></td></tr> <tr><td></td><td>18 19</td><td>0.040</td><td></td><td></td><td>0.021</td><td></td><td>28502</td></tr> <tr><td></td><td>19</td><td></td><td>-0.018</td><td></td><td></td><td></td><td>and the second</td></tr> <tr><td></td><td></td><td>0.010</td><td>-0.010</td><td>31.089</td><td>0.028</td><td></td><td>1</td></tr> <tr><td></td><td></td><td>0.019</td><td>-0.006</td><td>31.151</td><td>0.039</td><td></td><td>100000 1</td></tr> <tr><td>· 🔟</td><td>(iii) 20</td><td>-0.131</td><td>-0.142</td><td>34.197</td><td>0.025</td><td></td><td>1 1</td></tr> <tr><td></td><td></td><td></td><td></td><td>37.391</td><td></td><td></td><td>1000</td></tr> <tr><td>181</td><td>1 22</td><td>-0.064</td><td>-0.076</td><td>38.133</td><td>0.018</td><td></td><td>208 1</td></tr> <tr><td>101</td><td>1 23</td><td>-0.034</td><td>0.001</td><td>38.340</td><td>0.023</td><td></td><td>格德語 1</td></tr> <tr><td>1 1 1</td><td>1目1 24</td><td>0.031</td><td>-0.079</td><td>38.515</td><td>0.031</td><td></td><td>1</td></tr> <tr><td>1 🛛 1</td><td></td><td>-0.039</td><td></td><td></td><td></td><td></td><td>1111</td></tr> <tr><td>18 1</td><td>III 26</td><td>-0.086</td><td>-0.169</td><td>40.176</td><td>0.037</td><td></td><td>1</td></tr> <tr><td>1 1</td><td>27</td><td>-0.001</td><td>-0.040</td><td>40.176</td><td>0.049</td><td></td><td>BASSES I</td></tr> <tr><td>1 🗐 1</td><td>28</td><td>0.076</td><td>-0.002</td><td>41.249</td><td>0.051</td><td></td><td>1 1000</td></tr> <tr><td>2 1</td><td>1 29</td><td>-0.003</td><td>0.031</td><td>41.251</td><td>0.065</td><td></td><td>1</td></tr> <tr><td>1 11 1</td><td>1 30</td><td>0.061</td><td>-0.033</td><td>41.963</td><td>0.072</td><td></td><td>(E) (</td></tr> <tr><td>1 1</td><td>1日 31</td><td>-0.012</td><td>-0.080</td><td>41.993</td><td>0.090</td><td></td><td>13.63</td></tr> <tr><td>1 11</td><td></td><td></td><td></td><td>43.622</td><td></td><td></td><td>1 2251</td></tr> <tr><td>1 🛙 1</td><td>1 33</td><td>-0.040</td><td>0.023</td><td>43.940</td><td>0.097</td><td></td><td>1815 I</td></tr> <tr><td>1 1</td><td></td><td></td><td></td><td>43.973</td><td></td><td></td><td>1回1</td></tr> <tr><td>1 1</td><td>35</td><td>0 070</td><td>0 0 10</td><td>44.949</td><td>0 121</td><td></td><td></td></tr>	0.156 -0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094	0.145 -0.250 -0.086 -0.054 -0.226 -0.119 -0.057 -0.017 -0.019 -0.015 0.029 0.001 -0.096	6.7181 18.702 18.877 18.888 19.215 22.472 22.645 22.782 23.754 25.291 25.529 25.549 29.281 30.813	0.081 0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022				Image: 1 4 Image: 1 5 Image: 1 7 Image: 1 12 Image: 1 14 Image: 1 15 Image: 1 16 Image: 1 17 Image: 1 18 Image: 1 19	-0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.250 -0.086 -0.054 -0.226 -0.119 -0.057 -0.017 -0.019 -0.014 -0.065 0.029 0.001 -0.096	18.702 18.877 18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022				•E • 5 • • 6 • • 7 • • 7 • • 7 • • 10 • • 11 • • 12 • • 13 • • 13 • • 15 • • 16 • • 16 • • 17 • • 18 • • 19	-0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.086 -0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.014 -0.065 0.029 0.001 -0.096	18.877 18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022					0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022			· [· · · · · · · · · · · · · · · · · ·	- - - <td>-0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td> <td>0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td> <td>19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td> <td>0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td> <td></td> <td></td>	-0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022			· [· · · · · · · · · · · · · · · · · ·	Image: Second	-0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022			· [· · · · · · · · · · · · · · · · · ·	Image: 100 minipage 9 Image: 100 minipage 11 Image: 120 minipage 12 Image: 120 minipage 12 Image: 120 minipage 13 Image: 120 minipage 14 Image: 120 minipage 15 Image: 120 minipage 16 Image: 120 minipage 16 Image: 120 minipage 17 Image: 120 minipage 18 Image: 120 minipage 19	-0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022			· [·	I I 10 I I 11 I I 12 I I 13 I I 13 I I 14 I I 15 I I 16 I I 17 I I 18 I I 19	0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.012 0.019 0.022 0.021 0.031 0.043 0.022			· [· · · · · · · · · · · · · · · · · ·	1 11 1 12 1 13 1 13 1 14 1 15 1 16 1 17 1 17 1 18 1 19	-0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.019 0.022 0.021 0.031 0.043 0.022			· [· · · · · · · · · · · · · · · · · ·	Image: 12 12 Image: 13 13 Image: 14 13 Image: 14 14 Image: 15 15 Image: 16 16 Image: 16 17 Image: 17 18 Image: 17 19	-0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.219 -0.014 -0.065 0.029 0.001 -0.096	23.754 25.291 25.330 25.549 29.281 30.813	0.022 0.021 0.031 0.043 0.022				13 14 14 15 16 16 17 17 18 19	0.096 -0.015 0.036 0.148 -0.094 0.040	-0.014 -0.065 0.029 0.001 -0.096	25.291 25.330 25.549 29.281 30.813	0.021 0.031 0.043 0.022				14 1 15 1 16 10 11 16 17 17 17 18 19	-0.015 0.036 0.148 -0.094 0.040	-0.065 0.029 0.001 -0.096	25.330 25.549 29.281 30.813	0.031 0.043 0.022		1000		1 15 1 16 1 17 1 18 1 19	0.036 0.148 -0.094 0.040	0.029 0.001 -0.096	25.549 29.281 30.813	0.043 0.022		1000		1 16 1≣ 1 17 1 1 18 1 1 19	0.148 -0.094 0.040	0.001	29.281 30.813	0.022				17 11 18 19	-0.094 0.040	-0.096	30.813					18 19	0.040			0.021		28502		19		-0.018				and the second			0.010	-0.010	31.089	0.028		1			0.019	-0.006	31.151	0.039		100000 1	· 🔟	(iii) 20	-0.131	-0.142	34.197	0.025		1 1					37.391			1000	181	1 22	-0.064	-0.076	38.133	0.018		208 1	101	1 23	-0.034	0.001	38.340	0.023		格德語 1	1 1 1	1目1 24	0.031	-0.079	38.515	0.031		1	1 🛛 1		-0.039					1111	18 1	III 26	-0.086	-0.169	40.176	0.037		1	1 1	27	-0.001	-0.040	40.176	0.049		BASSES I	1 🗐 1	28	0.076	-0.002	41.249	0.051		1 1000	2 1	1 29	-0.003	0.031	41.251	0.065		1	1 11 1	1 30	0.061	-0.033	41.963	0.072		(E) (1 1	1日 31	-0.012	-0.080	41.993	0.090		13.63	1 11				43.622			1 2251	1 🛙 1	1 33	-0.040	0.023	43.940	0.097		1815 I	1 1				43.973			1回1	1 1	35	0 070	0 0 10	44.949	0 121		
0.156 -0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094	0.145 -0.250 -0.086 -0.054 -0.226 -0.119 -0.057 -0.017 -0.019 -0.015 0.029 0.001 -0.096	6.7181 18.702 18.877 18.888 19.215 22.472 22.645 22.782 23.754 25.291 25.529 25.549 29.281 30.813	0.081 0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																				
	Image: 1 4 Image: 1 5 Image: 1 7 Image: 1 12 Image: 1 14 Image: 1 15 Image: 1 16 Image: 1 17 Image: 1 18 Image: 1 19	-0.276 -0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.250 -0.086 -0.054 -0.226 -0.119 -0.057 -0.017 -0.019 -0.014 -0.065 0.029 0.001 -0.096	18.702 18.877 18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.001 0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
	•E • 5 • • 6 • • 7 • • 7 • • 7 • • 10 • • 11 • • 12 • • 13 • • 13 • • 15 • • 16 • • 16 • • 17 • • 18 • • 19	-0.033 0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.086 -0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.014 -0.065 0.029 0.001 -0.096	18.877 18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.002 0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
		0.008 -0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.054 0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	18.888 19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.004 0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
· [· · · · · · · · · · · · · · · · · ·	- - - <td>-0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040</td> <td>0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096</td> <td>19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813</td> <td>0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022</td> <td></td> <td></td>	-0.045 -0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	0.016 -0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	19.215 22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.008 0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
· [· · · · · · · · · · · · · · · · · ·	Image: Second	-0.142 -0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.226 -0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.472 22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.004 0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
· [· · · · · · · · · · · · · · · · · ·	Image: 100 minipage 9 Image: 100 minipage 11 Image: 120 minipage 12 Image: 120 minipage 12 Image: 120 minipage 13 Image: 120 minipage 14 Image: 120 minipage 15 Image: 120 minipage 16 Image: 120 minipage 16 Image: 120 minipage 17 Image: 120 minipage 18 Image: 120 minipage 19	-0.033 0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.119 -0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.645 22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.007 0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
· [·	I I 10 I I 11 I I 12 I I 13 I I 13 I I 14 I I 15 I I 16 I I 17 I I 18 I I 19	0.002 -0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.057 -0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.645 22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.012 0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
· [· · · · · · · · · · · · · · · · · ·	1 11 1 12 1 13 1 13 1 14 1 15 1 16 1 17 1 17 1 18 1 19	-0.029 -0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.017 -0.219 -0.014 -0.065 0.029 0.001 -0.096	22.782 23.754 25.291 25.330 25.549 29.281 30.813	0.019 0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
· [· · · · · · · · · · · · · · · · · ·	Image: 12 12 Image: 13 13 Image: 14 13 Image: 14 14 Image: 15 15 Image: 16 16 Image: 16 17 Image: 17 18 Image: 17 19	-0.076 0.096 -0.015 0.036 0.148 -0.094 0.040	-0.219 -0.014 -0.065 0.029 0.001 -0.096	23.754 25.291 25.330 25.549 29.281 30.813	0.022 0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
	13 14 14 15 16 16 17 17 18 19	0.096 -0.015 0.036 0.148 -0.094 0.040	-0.014 -0.065 0.029 0.001 -0.096	25.291 25.330 25.549 29.281 30.813	0.021 0.031 0.043 0.022																																																																																																																																																																																																																																																																																		
	14 1 15 1 16 10 11 16 17 17 17 18 19	-0.015 0.036 0.148 -0.094 0.040	-0.065 0.029 0.001 -0.096	25.330 25.549 29.281 30.813	0.031 0.043 0.022		1000																																																																																																																																																																																																																																																																																
	1 15 1 16 1 17 1 18 1 19	0.036 0.148 -0.094 0.040	0.029 0.001 -0.096	25.549 29.281 30.813	0.043 0.022		1000																																																																																																																																																																																																																																																																																
	1 16 1≣ 1 17 1 1 18 1 1 19	0.148 -0.094 0.040	0.001	29.281 30.813	0.022																																																																																																																																																																																																																																																																																		
	17 11 18 19	-0.094 0.040	-0.096	30.813																																																																																																																																																																																																																																																																																			
	18 19	0.040			0.021		28502																																																																																																																																																																																																																																																																																
	19		-0.018				and the second																																																																																																																																																																																																																																																																																
		0.010	-0.010	31.089	0.028		1																																																																																																																																																																																																																																																																																
		0.019	-0.006	31.151	0.039		100000 1																																																																																																																																																																																																																																																																																
· 🔟	(iii) 20	-0.131	-0.142	34.197	0.025		1 1																																																																																																																																																																																																																																																																																
				37.391			1000																																																																																																																																																																																																																																																																																
181	1 22	-0.064	-0.076	38.133	0.018		208 1																																																																																																																																																																																																																																																																																
101	1 23	-0.034	0.001	38.340	0.023		格德語 1																																																																																																																																																																																																																																																																																
1 1 1	1目1 24	0.031	-0.079	38.515	0.031		1																																																																																																																																																																																																																																																																																
1 🛛 1		-0.039					1111																																																																																																																																																																																																																																																																																
18 1	III 26	-0.086	-0.169	40.176	0.037		1																																																																																																																																																																																																																																																																																
1 1	27	-0.001	-0.040	40.176	0.049		BASSES I																																																																																																																																																																																																																																																																																
1 🗐 1	28	0.076	-0.002	41.249	0.051		1 1000																																																																																																																																																																																																																																																																																
2 1	1 29	-0.003	0.031	41.251	0.065		1																																																																																																																																																																																																																																																																																
1 11 1	1 30	0.061	-0.033	41.963	0.072		(E) (
1 1	1日 31	-0.012	-0.080	41.993	0.090		13.63																																																																																																																																																																																																																																																																																
1 11				43.622			1 2251																																																																																																																																																																																																																																																																																
1 🛙 1	1 33	-0.040	0.023	43.940	0.097		1815 I																																																																																																																																																																																																																																																																																
1 1				43.973			1回1																																																																																																																																																																																																																																																																																
1 1	35	0 070	0 0 10	44.949	0 121																																																																																																																																																																																																																																																																																		

Г

te: 06/08/05 Tin mple: 1960Q1 19 luded observatio	98Q4					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	-0.316	-0.316	15,732	0.000
10000	DECEMBER 1	2	-0.284	-0.426	28.598	0.000
133537	The second se			-0.794	45.249	0.000
I THE INSTRUMENT OF	I REPRESENTATION	4	0.922	0.713	182.19	
1	(E) 1	5	-0.312		197.98	
1000 H			-0.267		209.63	0.000
TRAVES 1	1 1			-0.077		
	1 1 1	8		0.075	353.29	
ESET 1				-0.007		0.000
				-0.007		
ENTERING I				-0.010	395.54	
Accession of the local division of the local	1 1	1.0.1				
	1	12		-0.061	511.89	0.000
1			-0.266			0.000
1	i Di		-0.219		532.26	
1	1 🛛 1	1	-0.313	0.051	549.29	0.000
1 Michael Mit	1 🖻 1		0.791	0.104		0.000
10000	1 1 1			-0.039		0.000
1	1 1			0.015		
1	1 L L	19	-0.313	-0.009	694.90	
I Second Providence	11	20	0.751	-0.007	796.48	0.000
1	1 1	21	-0.231	0.069	806.13	0.000
1	101	22	-0.194	-0.065	813.01	0.000
10100	1 1 1	23	-0.316	-0.022	831.44	0.000
1 0000000000000000000000000000000000000	1 1 1	24	0.721	0.046	928.09	0.000
1	181	25	-0.220	-0.057	937.17	0.000
E238 1	1 1		-0.182	0.009		0.000
FROM I	181			-0.068		0.000
1 Childenhaused	1			-0.028	1054.9	
1			-0.203		1062.9	
657	. 81		-0.154		1067.5	0.000
ESSEE 1	1 81					
Contraction of the local division of the loc	1.12		-0.309	0.092	1086.2	0.000
	1 11	1.5.65	0.657		1171.6	0.000
	I PI		-0.188	0.078	1178.6	0.000
	1 1	1000	-0.129	0.045	1182.0	0.000
Realized 1	l P		-0.304	0.063	1200.7	0.000
	1 🛙 1	136	0.607	-0.053	1276.1	0.000

4.2. The models

1.White noise (WN) Process (Random shock)

 $\{X_t\}$ is a sequence of independent and identical random variables with zero mean and finite variance, σ^2 , $X_t \sim WN(0, \sigma^2)$, $\{X_t\}$ is stationary with

$$\gamma_{x}(t+h \ t \) \neq \begin{cases} \sigma^{2} \ h=0\\ 0 \ h\neq 0 \end{cases}; \qquad \rho_{k} = \begin{cases} 1, k=0\\ 0, k\neq 0 \end{cases}; \qquad \phi_{kk} = \begin{cases} 1, k=0\\ 0, k\neq 0 \end{cases}$$

White Noise process is a purely random process where all autocorrelation functions for every h are close to zero. White noise (in spectral analysis): white light is produced in which all frequencies (i.e., colors) are present in equal amount. It is a memoryless process, builds block from which we can construct more complicated models and it plays the role of an orthogonal basis in the general vector and function analysis.

Example: White Noise process is a purely random process where all autocorrelation functions for every h are close to zero.

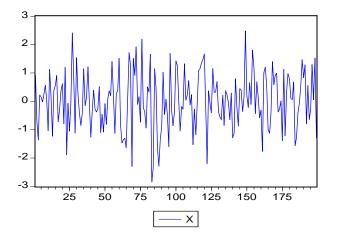


Figure 4.1. The plot of index numbers having White Noise model

2. Random Walk

Let $\{S_t, t = 1, 2, \dots\}$ be a process with $S_t = X_1 + \dots + X_t$ where $X_t \sim WN(0, \sigma^2)$. Then, $E(S_t) = 0; Var(S_t) = t\sigma^2; \gamma(t+h, t) = t\sigma^2$

Since $\gamma(t+h,t)$ depends on t, S_t is not stationary. However, $Z_t = X_t - X_{t-1}$ is stationary.

3. Linear Process

Let $\{Z_t\}$ be a WN process with mean 0 and variance σ^2 . $\{X_t\}$ is a Linear process if

$$X_{t} = Z_{t} + \psi_{1}Z_{t-1} + \psi_{2}Z_{t-2} + \dots = Z_{t} + \sum_{i=1}^{\infty} \psi_{i}Z_{t-i} \text{ having}$$
$$E[X_{t}] = 0; Var[X_{t}] = \sigma_{z}^{2}$$
$$\gamma(h) = \begin{cases} \sigma_{z}^{2} & h = 0\\ 0 & h \neq 0 \end{cases}; \quad \rho(h) = \begin{cases} 1 & h = 0\\ 0 & h \neq 0 \end{cases}$$

and $\sum_{i=1}^{\infty} |\psi_i| < \infty$ as the stationarity condition.

4. Moving Average Process MA(q)

Let $\{Z_t\}$ be a WN process with mean 0 and variance σ^2 . $\{X_t\}$ is a Moving Average of order q if $X_t = \theta_0 Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q} = \sum_{i=0}^q \theta_i Z_{t-i}$ where $\{\theta_i\}$ are the constants and

usually $\theta_0 = 1$.

<u>For q=1, MA(1) is</u> $X_t = \theta Z_{t-1} + Z_t$

Then $E(X_{t}) = 0; V(X_{t}) = \sigma^{2}(1 + \theta^{2}) < \infty$

$$\gamma_{x}(t+h,t) = \begin{cases} \sigma^{2}(1+\theta^{2}) & h=0\\ \sigma^{2}\theta & h=\mp 1\\ 0 & |h|>1 \end{cases}, \qquad \rho_{x}(h) = \begin{cases} 1 & h=0\\ \frac{\theta}{1+\theta^{2}} & h=\mp 1\\ 0 & |h|>1 \end{cases}$$

- i. MA(q) process is second-order stationary for all values of $\{\theta_i\}$.
- ii. If Z_t 's are Normally distributed, so are the X_t 's \Rightarrow Normal Process \Rightarrow Strictly stationary.

Example:

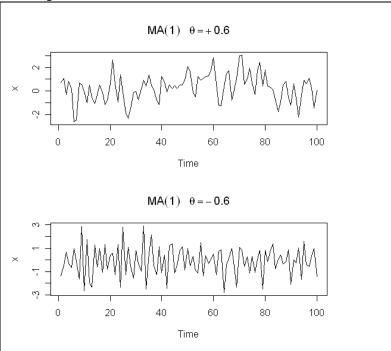


Figure 4.2. An example to MA process

5. Autoregressive Process: AR(p)

Let $\{X_i\}$ is a stationary series and $\{Z_i\}$ is a White Noise with mean 0 and variance σ^2 .

{ X_{t} } is said to be AR(p) if $X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t}$ $t = 0, \mp 1, \dots;$ where $|\phi_{t}| < 1$

AR(1) Process

$$X_{t} = \phi X_{t-1} + Z_{t}$$
 with $E(X_{t}) = 0$, and $V(X_{t}) = \frac{\sigma^{2}}{1 - \phi^{2}}$ $|\phi_{1}| < 1$

Proof: AR(p) can be expressed in terms of $MA(\infty)$ by successive substitution.

Take p=1

$$\begin{aligned} X_{t} &= \phi X_{t-1} + Z_{t} = \phi [\phi X_{t-2} + Z_{t-1}] + Z_{t} = \phi^{2} X_{t-2} + \phi Z_{t-1} + Z_{t} = \phi^{2} [\phi X_{t-3} + Z_{t-2}] + \phi X_{t-1} + Z_{t} \\ \vdots \\ X_{t} &= Z_{t} + \phi Z_{t-1} + \phi^{2} Z_{t-2} + \phi^{3} Z_{t-3} + \cdots \quad iff \quad |\phi| < 1 \end{aligned}$$

$$E(X_{t}) = E[Z_{t} + \phi Z_{t-1} + \phi^{2} Z_{t-2} + \phi^{3} Z_{t-3} + \cdots] = 0$$

$$V(X_{t}) = V[Z_{t} + \phi Z_{t-1} + \phi^{2} Z_{t-2} + \phi^{3} Z_{t-3} + \cdots] = \sigma^{2}[1 + \phi^{2} + \phi^{4} + \cdots]$$

$$V(X_{t}) = \frac{\sigma^{2}}{1 - \phi^{2}} \quad where \quad \sum_{i=0}^{\infty} r^{i} = \frac{1}{1 - r} \quad if |r| < 1$$

Example: AR(2) process

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + Z_{t} \quad Z_{t} \sim WN(0,\sigma^{2})$$

Example:

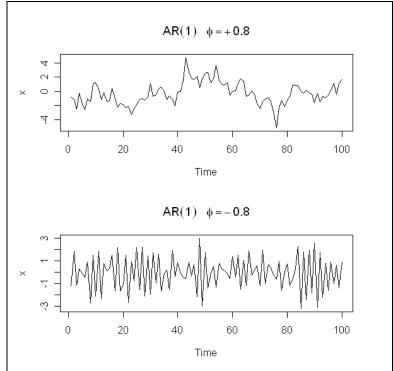


Figure 4.3 An example to AR(1) process

Yule Walker Equations

The recursive computation of the autocorrelation function of an AR(p) model satisfying the stationary condition.

Consider AR(p) process

$$X_t = \sum_{j=1}^p \phi_j X_{t-j} + Z_t$$
 where $Z_t \approx WN(0, \sigma^2)$ satisfying the stationary conditions. The

autocorrelation function of AR(p) satisfies for any h:

$$\rho(h) = \sum_{j=1}^{p} \phi_j \rho(h-j) = \rho(-s)$$
$$\gamma(h) = \sum_{j=1}^{p} \phi_j \gamma(h-j)$$

Proof is straightforward by taking the expectation of AR(p) process is multiplied both sides of the equation by X_{t+h} .

These equations can be expressed as

$$\begin{pmatrix} \rho(1) \\ \rho(2) \\ \rho(3) \\ \vdots \\ \rho(p) \end{pmatrix} = \begin{pmatrix} 1 & \rho(1) & \rho(2) & \dots & \rho(p-1) \\ \rho(1) & 1 & & & \\ \rho(2) & 1 & & & \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \rho(p-1) & & & 1 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \vdots \\ \phi_p \end{pmatrix}$$

Replacing the parameters by empirical estimators

$$\begin{pmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \\ \hat{\rho}(3) \\ \vdots \\ \hat{\rho}(p) \end{pmatrix} = \begin{pmatrix} 1 & \hat{\rho}(1) & \hat{\rho}(2) & \dots & \hat{\rho}(p-1) \\ \hat{\rho}(1) & 1 & & & \\ \hat{\rho}(2) & 1 & & & \\ \vdots & \vdots & \ddots & \ddots & \dots & \vdots \\ \hat{\rho}(p-1) & & & 1 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \vdots \\ \phi_p \end{pmatrix} \Rightarrow \boldsymbol{\rho} = \mathbf{R} \boldsymbol{\Phi}$$

$$\begin{pmatrix} \hat{\phi}_1 \\ \hat{\phi}_2 \\ \hat{\phi}_3 \\ \vdots \\ \hat{\phi}_p \end{pmatrix} = \begin{pmatrix} 1 & \hat{\rho}(1) & \hat{\rho}(2) & \dots & \hat{\rho}(p-1) \\ \hat{\rho}(1) & 1 & & & \\ \hat{\rho}(2) & 1 & & & \\ \vdots & \vdots & \vdots & \ddots & \dots & \vdots \\ \hat{\rho}(p-1) & & & 1 \end{pmatrix}^{-1} \begin{pmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \\ \hat{\rho}(3) \\ \vdots \\ \hat{\rho}(p) \end{pmatrix} \Rightarrow \hat{\boldsymbol{\Phi}} = \mathbf{R}^{-1} \boldsymbol{\rho}$$

Asymptotic distribution of Yule-Walker estimators

For a causal AR(p) process, the asymptotic distribution of

 $\sqrt{n}(\hat{\Phi}-\Phi) \xrightarrow{d} N(0,\sigma^2 R^{-1})$ as $\hat{\sigma}^2 \xrightarrow{p} \sigma^2$

Partial autocorrelation Function (PACF)

Correlogram is useful for identifying a pure moving average model, since there will tend to be cut-off significant points on the correlogram after appropriate lag depth. For autoregressive or mixed processes, the order of the autoregressive component may be harder to determine from the correlogram. For this reason, it is usual to use a complementary procedure which involves plotting the estimated coefficient of X_{t-k} , from

an Least Square estimate of an AR(p) model. If the observations are generated by an AR(p) process, then the theoretical partial autocorrelations are zero at lags beyond p. Since any invertible MA process can be represented as an AR process with geometrically decreasing coefficients, the partial autocorrelation function for an MA process should decay slowly. The identification of a mixed model may be more difficult to determine.

Under the assumption of normality the partial correlation of X and Y conditional on W is

$$\rho_{x,y,w} = \frac{E[(X - E(X \mid W))(Y - E(Y \mid W))]}{\{E[(X - E(X \mid W))^{2}]E[(Y - E(Y \mid W))^{2}]\}^{\frac{1}{2}}} = \frac{\rho_{xy} - \rho_{xw}\rho_{yw}}{[(1 - \rho_{xw}^{2})(1 - \rho_{yw}^{2})]^{\frac{1}{2}}}$$

For an AR(p) process PAC, ϕ_{hh} is the correlation coefficient between X_t and X_{t-h} controlling the effect of X_{t-h-1}

$$\phi_{hh} = \frac{\begin{vmatrix} 1 & \rho(1) & \cdots & \rho(h-2) & \rho(1) \\ \rho(1) & 1 & \cdots & \rho(h-3) & \rho(2) \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \rho(h-1) & \rho(h-2) & \cdots & \rho(1) & \rho(h) \\ \hline \begin{vmatrix} 1 & \rho(1) & \cdots & \cdots & \rho(h-1) \\ \rho(1) & 1 & \cdots & \cdots & \rho(h-2) \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \vdots & \rho(1) \\ \rho(h-1) & \cdots & \cdots & \rho(1) & \rho(h) \end{vmatrix}$$

Equivalently, Levinson and Durbin's Recursive Formula gives

$$\phi_{hh} = \frac{\rho(h) - \sum_{j=1}^{h-1} \phi_{h-1,j} \quad \rho_{h-j}}{1 - \sum_{j=1}^{h-1} \phi_{h-1,j} \quad \rho_j} \quad h = 1, 2, 3, \cdots$$

$$\phi_{hj} = \phi_{h-1} - \phi_{hh} \phi_{h-1,h-j} \quad j = 1, 2, \dots, h-1$$

Example: For an AR(2) process find the partial autocorrelation function.

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + Z_{t} - Z_{t} \sim WN(0,\sigma)$$

$$\phi_{11} = \rho(1); \quad \phi_{22} = \frac{\rho(2) - \rho(1)^2}{1 - \rho(1)^2}; \quad \phi_{pp} = \phi_p; \quad \phi_{hh} = 0 \quad h > p$$

Partial Autocorrelation for MA(1) process

$$\begin{split} \phi_{hh} &= \frac{\theta^{h}(1-\theta^{2})}{1-\theta^{2(h+1)}} \quad for \quad h > 0 \\ \phi_{11} &= \frac{\theta(1-\theta^{2})}{1-\theta^{4}} \quad \phi_{22} = \frac{\theta^{2}(1-\theta^{2})}{1-\theta^{6}} \quad \phi_{33} = \frac{\theta^{3}(1-\theta^{2})}{1-\theta^{8}} \end{split}$$

Asymptotic distribution of Partial Autocorrelations

For a causal AR(p) process, the asymptotic distribution of

$$\sqrt{n\hat{\alpha}_{kk}} \longrightarrow N(0,1)$$

6. Combined Autoregressive Moving Average (ARMA) processes

$$Z_{t} \sim WN(0, \sigma^{2})$$

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t} + \theta_{1}X_{t-1} + \theta_{q}Z_{t-q}$$

ARMA(1,1) process

 $X_{t} - \mu = \phi(X_{t-1} - \mu) + Z_{t} + \theta Z_{t-1}$

Properties of the ACF and PACF for various ARMA Models

Model	ACF	PACF
AR(1)	Exponential or oscillatory decay	$\phi_{hh} = 0$ for h>1
AR(2)	Exponential or sine wave decay	$\phi_{hh} = 0$ for h>2
AR(p)	Exponential or sine wave decay	$\phi_{hh} = 0$ for h>p
MA(1)	$\rho_h = 0 = 0$ for h>1	Dominated by damped exponential
MA(2)	$\rho_h = 0 = 0$ for h>2	Dominated by damped exponential or sine wave
MA(q)	$\rho_h = 0 = 0$ for h>q	Dominated by linear combination of damped exponential and/or sine waves
ARMA(1,1)	Tails off. Exponential decay	Tails off. Dominated by exponential
	from lag 1	decay from lag 1
ARMA(p,q)	Tails off after (q-p) lags.	Tails off after (p-q) lags. Dominated
	Exponential and/or sine wave	by damped exponentials and or sine
	decay after (q-p) lags	waves after (p-q) lags

Backward Shift Operator, B:

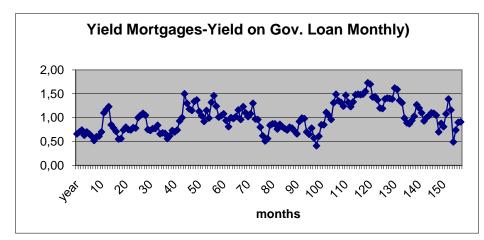
$$BX_{t} = X_{t-1}$$

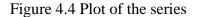
$$B(BX_{t}) = BX_{t-1} = X_{t-2}$$

$$B^{2}X_{t} = X_{t-2}$$

$$B^{j}X_{t} = X_{t-j} \quad j \ge 0 \quad B^{0} = 1$$

Example:


Random Walk process can be expressed as


$$Y_t = Y_{t-1} + e_t \Longrightarrow Y_t - Y_{t-1} = e_t \Longrightarrow Y_t - BY_t = e_t \Longrightarrow \langle \!\! \langle -B \rangle \!\! \rangle_t = e_t$$

Example:

The following series contain some part of the 159 observations on the monthly differences between the yield mortgages and the yield on government loans in Netherlands From Jan. 1961 to Dec. 1973

Year	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
1961	0.66	0.70	0.74	0.63	0.70	0.66	0.61	0.52	0.60	0.61	0.7	1.1
1962	1.17	1.23	0.85	0.78	0.71	0.55	0.56	0.74	0.80	0.75	0.74	0.79
1963	0.78	1	1.05	1.09	1.05	0.75	0.73	0.77	0.77	0.84	0.66	0.68

Sample Average $\overline{x} = \frac{0.66 + 0.70 + 0.74 + ...}{159} = 0.993$

The Variance is

$$\hat{\gamma}(0) = Cov(X_t, X_t) = Var(X_t) = \frac{(0.66 - 0.993)^2 + (0.70 - 0.993)^2 + (0.74 - 0.993)^2 + \dots}{158} = 0.085$$

Correlation coefficient for lag h

h=1

$$\hat{\rho}(1) = \frac{Cov(X_t, X_{t+1})}{Var(X_t)} = \frac{\hat{\gamma}(X_t, X_{t+1})}{\hat{\gamma}(X_t, X_t)} = \frac{\hat{\gamma}(1)}{\hat{\gamma}(0)} = \frac{(0.66 - 0.993)(0.70 - 0.993) + (0.74 - 0.993)(0.63 - 0.993) +}{(0.66 - 0.993)^2 + (0.70 - 0.9)^2 + ...} = 0.84$$

$$h=2$$

$$\hat{\rho}(2) = \frac{\hat{\gamma}(2)}{\hat{\gamma}(0)} = \frac{(0.66 - 0.993)(0.74 - 0.993) + (0.70 - 0.993)(0.63 - 0.993) +}{(0.66 - 0.993)^2 + (0.70 - 0.9)^2 + ...}} = 0.6$$

$$h=3$$

$$\hat{\rho}(3) = \frac{\hat{\gamma}(3)}{\hat{\gamma}(0)} = \frac{(0.66 - 0.993)(0.63 - 0.993) + (0.70 - 0.993)(0.70 - 0.993) +}{(0.66 - 0.993)^2 + (0.70 - 0.9)^2 + ...}} = 0.584$$

<u>Autocorrelation and partial auticorrelation Functions</u> for lag h=1,2,3,...,20

A	CF	7												
]	h	1	2	3	4	5	6	7		8	9		10)
	ρ	0.841	0.683	0.584	0.515	0.457	0.427	0.	.405	0.386	0.3	361	0.3	321
	h	11	12	13	14	15	16	17	7	18	19)	20)
1	ρ	0.329	0.338	0.337	0.294	0.231	0.166	0.	.126	0.062	0.0	047	0.0	042
P	PACF													
]	h	1	2	3	4	5	6		7	8		9		10
	φ	0.841	-0.083	0.111	0.036	0.018	3 0.09	1	0.02	5 0.03	85	0.0	03	-0.044
	h	11	12	13	14	15	16		17	18		19		20
	φ	0.168	0.001	0.027	-0.110	-0.08	-0.05	57	0.00	7 -0.1	52	0.1	22	-0.071

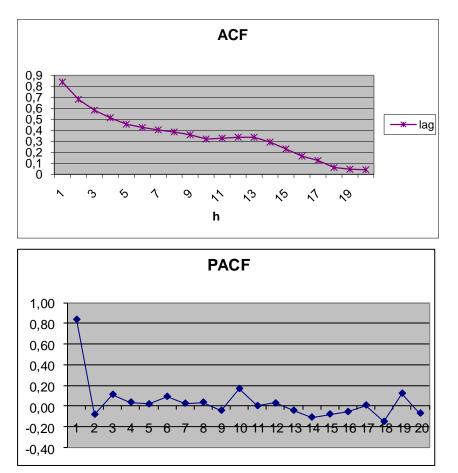


Figure 4.5 Plots of the ACF and PACF values

Dependent Variable: YIEL Method: Least Squares Date: 01/21/08 Time: 00 Sample (adjusted): 2 158 Included observations: 157 Convergence achieved after):14 7 after adjustments			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.003013	0.079014	12.69410	0.0000
AR(1)	0.841074	0.042868	19.62019	0.0000
R-squared	0.712937	Mean depende	ent var	0.994586
Adjusted R-squared	0.711085	S.D. dependen	t var	0.292556
S.E. of regression	0.157251	Akaike info cr	iterion	-0.849287
Sum squared resid	3.832832	Schwarz criter	ion	-0.810354
Log likelihood	68.66904	F-statistic		384.9517
Durbin-Watson stat	1.860085	Prob(F-statisti	c)	0.000000

4.3 Stationary Conditions: Invertibility:

Consider a MA(q) process.

$$X_{t} = \theta_{0}Z_{t} + \theta_{1}Z_{t-1} + \dots + \theta_{q}Z_{t-q} = (1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q})Z_{t}$$
$$X_{t} = \Theta(B)Z_{t}$$

The model can be written in infinite order autoregressive form with drift

$$X_{t} = Z_{t} + \pi_{1}X_{t-1} + \pi_{2}X_{t-2} + \ldots = \sum_{i=1}^{\infty} \pi_{i}X_{t-i} + Z_{t}; \qquad \sum_{j=1}^{\infty} \left|\pi_{j}\right| < \infty$$

We can express the series as

$$\Pi(B)X_t = Z_t \Longrightarrow \Pi(B)\Theta(B) = 1$$

The series is stationary if the the roots of $\Pi(B) = 0$ lies outside of the unit circle, i.e. |B| > 0. This condition is satisfied when $|\theta_i| < 0$; i = 1, ..., q. The process is invertible if the coefficients of the MA(q) lie within the unit circle.

Causality: Characteristic equation

Consider AR(p) process given as

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t}$$

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} - \dots - \phi_{p}X_{t-p} = Z_{t}$$

$$(1 - \phi_{1}B + \phi_{2}B^{2} + \dots + \phi_{p}B^{p})X_{t} = Z_{t}$$

$$\Phi(B)X_{t} = Z_{t}$$

Expressing the series as an infinite order MA process yields

$$X_{t} = Z_{t} + \psi_{1}Z_{t-1} + \psi_{2}Z_{t-2} + \dots = (1 + \psi_{1}B + \psi_{2}B^{2} + \dots)Z_{t} = \Psi(B)Z_{t}$$

$$\Phi(B)\Psi(B) = 1$$

 $\Phi(B) = 0$ is called the characteristic equation of the series. To ensure the stationary condition, the roost of the characteristic equation should lie outside the unit circle.

4.4. Estimation

Consider AR(1) process having drift

 $X_t - \mu = \phi(X_{t-1} - \mu) + Z_t$ where $|\phi| < 1$, $\mu \in \Re$, $Z_t \approx N(0, \sigma^2)$, given x_t , t=1,2,...n, the likelihood function

$$L(\mu, \phi, \sigma) = f(x_1) f(x_2 | x_1) \dots f(x_2 | x_{n-1})$$

As $X_2 | X_1 \approx N(\mu + \phi(X_{t-1} - \mu), \sigma^2), \quad f(x_t | x_{t-1}) = f_Z((x_t - \mu) - \phi(x_{t-1} - \mu))$ and
 $X_1 \approx N(\mu, \frac{\sigma^2}{1 - \phi^2})$

Then the likelihood is

$$L(\mu, \phi, \sigma^{2}) = f(x_{1}) \prod_{t=2}^{n} f_{Z}((x_{t} - \mu) - \phi(x_{t-1} - \mu))$$
$$= \P \pi \sigma^{2} \int_{-\infty}^{\infty} (1 - \phi^{2})^{\frac{1}{2}} \exp\left\{-\frac{S(\mu, \phi)}{2\sigma^{2}}\right\}$$

 $S(\mu,\phi) = (1-\phi^2)(x_1-\mu)^2 + \sum_{t=2} \left[X_t - \mu \right] - \phi(X_{t-1}-\mu)^2$ Unconditional sum of squares

$$\ln L(\mu,\phi,\sigma^2) = -\frac{n}{2}\ln\sigma^2 - \frac{n}{2}\ln 2\pi + \frac{1}{2}(1-\phi^2) - \frac{S(\mu,\phi)}{2\sigma^2}$$
$$\frac{\partial \ln L(\mu,\phi,\sigma^2)}{\partial\sigma^2} = 0 \Rightarrow \hat{\sigma}^2 = \frac{S(\hat{\mu},\hat{\phi})}{n}$$

AR models are linear models conditional on initial values. Therefore, dropping the term in the likelihood that causes non-linearity, the "**Conditional Likelihood**" is found.

$$L(\mu, \phi, \sigma^2 | x_1) = \prod_{t=2}^n f_Z((x_t - \mu) - \phi(x_{t-1} - \mu))$$

= $\left(\pi \sigma^2 \right)^{\frac{n-1}{2}} (1 - \phi^2)^{\frac{1}{2}} \exp\left\{ -\frac{S_C(\mu, \phi)}{2\sigma^2} \right\}$
$$S(\mu, \phi) = \sum_{t=2} \left[X_t - \mu \right] - \phi(X_{t-1} - \mu)^2 \quad \text{Conditional sum of squares}$$

$$\frac{\partial \ln L(\mu, \phi, \sigma^2)}{\partial \sigma^2} = 0 \Rightarrow \hat{\sigma}^2 = \frac{S(\hat{\mu}, \hat{\phi})}{n-1}$$

Estimates of μ and ϕ are:

Let
$$\beta = \mu(1-\phi) \Rightarrow S_{C}(\mu,\phi) = \sum_{t=2}^{n} \left[\mathbf{K}_{t} - (\beta + \phi X_{t-1}) \right]^{2}$$
. By LSE technique
 $\hat{\beta} = \overline{X}_{2} - \hat{\phi}\overline{X}_{1} \Rightarrow \hat{\mu} = \frac{\overline{X}_{2} - \hat{\phi}\overline{X}_{1}}{1-\phi^{2}}; \quad \hat{\phi} = \frac{\sum_{t=2}^{n} (x_{t} - \overline{X}_{2})(x_{t-1} - \overline{X}_{1})}{\sum_{t=2}^{n} (x_{t-1} - \overline{X}_{1})^{2}}$
 $\overline{X}_{1} = \frac{1}{n-1} \sum_{t=1}^{n-1} x_{t}; \quad \overline{X}_{2} = \frac{1}{n-1} \sum_{t=2}^{n} x_{t}$

Maximum Likelihood of MA(1) Process

Given
$$Z_t = (X_t - \mu) - \theta Z_{t-1}$$

$$L(\mu,\phi,\sigma^{2}) = (\pi\sigma^{2})^{n} \left(\frac{1-\theta^{2}}{1-\theta^{2(n+1)}}\right)^{\frac{1}{2}} \exp\left\{-\frac{S(\mu,\theta)}{2\sigma^{2}}\right\}$$

Maximum Likelihood of ARMA(1,1) Process

Given $Z_t = X_t - \phi X_{t-1} - \theta Z_{t-1}$

$$|Z'Z| = \frac{(1-\phi^2)(1-\theta^2) + (1-\theta^{2n})(\theta-\phi)^2}{(1-\theta^2)(1-\phi^2)}$$

Example

Consider a stationary MA(1) model with zero mean given below. Derive the likelihood function and obtain the unconditional least squares estimates of the parameters.

$$X_t = \theta Z_{t-1} + Z_t; \quad Z_t \approx N(0, \sigma^2), i.i.d.$$
 Given t=1,2

$$\begin{split} & L(\phi, \sigma^{2}) = f(x_{1})f(x_{2} \mid x_{1}) \\ & X_{1} = Z_{1} \\ & X_{2} = \theta Z_{1} + Z_{2} \\ \end{split} \qquad Z_{1} = X_{1} \qquad Z_{2} = X_{2} - \theta X_{1} \Rightarrow |J| = \begin{vmatrix} 1 & 0 \\ \theta & 1 \end{vmatrix} \\ & L(\phi, \sigma^{2}) = f(z_{1})f(z_{2} \mid x_{1})|J| \\ & L(\phi, \sigma^{2}) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{1/2} \exp\left\{-\frac{z_{1}^{2}}{2\sigma^{2}}\right\} \left(\frac{1}{2\pi\sigma^{2}}\right)^{1/2} \exp\left\{-\frac{z_{2}^{2}}{2\sigma^{2}}\right\} \\ & L(\phi, \sigma^{2}) = \left(\frac{1}{2\pi\sigma^{2}}\right) \exp\left\{-\frac{x_{1}^{2} + (x_{2} - \theta x_{1})^{2}}{2\sigma^{2}}\right\} \\ & \log L(\phi, \sigma^{2}) = -\log(2\pi\sigma^{2}) + \frac{x_{1}^{2} + (x_{2} - \theta x_{1})^{2}}{2\sigma^{2}} \\ & \frac{\partial}{\partial\sigma^{2}} \log L(\phi, \sigma^{2}) = 0 \Rightarrow -\frac{1}{\sigma^{2}} + \frac{x_{1}^{2} + (x_{2} - \theta x_{1})^{2}}{2 \sqrt{2}} \\ & \frac{\partial}{\partial\theta} \log L(\phi, \sigma^{2}) = 0 \Rightarrow \frac{x_{1}(x_{2} - \theta x_{1})x_{1}}{2} = 0 \\ & \hat{\theta} = \frac{x_{2}}{x_{1}} \end{split}$$

Exercises

- **1.** Consider the model $X_t = \phi X_{t-2} + Z_t + \theta Z_{t-1}$ where $Z_t \sim WN$
- a. Is the model stationary? Invertible? State the conditions for stationarity of this model.
- b. Write the model interms of a linear process, specify ψ_1, ψ_2, ψ_3 in terms of (ϕ, θ)
- c. For ϕ =0.2, what constant should be added to the right hand side of the model so that $E(X_t)$ =5?
- d. Suppose $E(Z_t)=1$. What would be $E(X_t)$ in terms of (ϕ, θ) 2. Consider the following model with $\sigma^2=1.44$.

$$X_{t} = 0.4X_{t-1} + 0.2X_{t-2} + Z_{t}; \qquad Z_{t} \sim WN$$

- a. Find ρ_1, ρ_2, ρ_3
- b. $\phi_{11}, \phi_{22}, \phi_{33}$ and $\gamma(0)$
 - **3.** Consider the model

$$X_{t} = X_{t-1} + \phi X_{t-2} + Z_{t}$$

- a. For what values of ϕ is the model stationary?
- b. Find $\rho(1)$ in terms of ϕ .
- c. Find $\psi_1, \psi_2, \psi_3, \psi_4$.
- 4. Consider the model

 $X_t = \phi X_{t-2} + Z_t + \theta Z_{t-3}$

Assuming the model is stationary, find $\gamma(0)$, $\rho(1)$, $\rho(2)$, ϕ_{22} .

- 5. Let $\{Z_t\}$ be zero-mean white noise. Find the autocorrelation function for the following two processes:
- a. $X_t = Z_t + \frac{1}{3}Z_{t-1}$
- b. $X_t = Z_t + 3Z_{t-1}$
- c. You should have discovered that both series are stationary and have the same autocorrelation functions. Do you think that these models could be distinguished on the basis of observations of Z_t .
 - 6. Suppose $X_t = 5 + 2t + Z_t$ where $\{Z_t\}$ is a zero-mean stationary series with

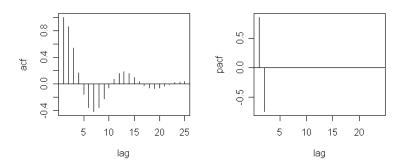
autocovariance function $\gamma(h)$.

- a. Find the mean function for $\{X_t\}$
- b. Find the autocovariance function for $\{X_t\}$
- c. Is $\{X_t\}$ stationary? (Why or why not)

- 7. Suppose $X_t = \beta_0 + \beta_1 t + Z_t$ where $\{Z_t\}$ is stationary. Show that $\{X_t\}$ is not stationary but that $\nabla X_t = X_t X_{t-1}$ is stationary.
- 8. Calculate $V(X_t)$ in terms of σ^2 for the following stochastic process

$$X_t - \mu = Z_t + 0.4Z_{t-1} + (0.4)^2 Z_{t-2} + (0.4)^3 Z_{t-3} + \dots$$

- 9. Find ψ_1, ψ_2, ψ_3 for the following models
- a. $(1-0.8B)(X_t-\mu)=Z_t$
- b. $X_t=0.8X_{t-1}-0.1X_{t-2}+Z_t$
- c. Find $\rho(1)$, $\rho(2)$ and $\rho(3)$ for models (a) and (b).


10.Determine which of the models to be chosen to model the series. **Model 1**

Dependent Variable: SERIES01								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
AR(1)	0.842172	0.075479	11.15765	0.0000				
MA(1)	-0.302824	0.133818	-2.262957	0.0259				
R-squared	0.493503	Mean dep	-0.174202					
Adjusted R-squared	0.488282	S.D. depe	1.638134					
S.E. of regression	1.171830	Akaike in	fo criterion	3.175006				
Sum squared resid	133.1991	Schwarz c	criterion	3.227433				
Log likelihood	-155.1628	Durbin-W	atson stat	1.966866				
Inverted AR Roots	.84							
Inverted MA Roots	.30							

Model 2

Dependent Variable: SERIES01								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
AR (1)	0.692724	0.073036	9.484638	0.0000				
R-squared	0.472652	Mean depe	ndent var	-0.174202				
Adjusted R-squared	0.472652	S.D. depen	dent var	1.638134				
S.E. of regression	1.189592	Akaike info	o criterion	3.195148				
Sum squared resid	138.6827	Schwarz cr	riterion	3.221361				
Log likelihood	-157.1598	Durbin-Wa	tson stat	2.221013				
Inverted AR Roots	.69							

10. Write the order of the process based on the ACF and PACF plots below.

11. Determine which of the coefficients to be chosen to model the series. **Model 1**

Dependent Variable: SE	ERIES01			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.961179	0.436832	2.200340	0.0302
AR(2)	-0.090880	0.329854	-0.275515	0.7835
MA(1)	-0.412044	0.414466	-0.994155	0.3227
R-squared	0.495243	Mean depend	ent var	-0.175980
Adjusted R-squared	0.484616	S.D. depende	nt var	1.646460
S.E. of regression	1.181997	Akaike info c	riterion	3.202423
Sum squared resid	132.7262	Schwarz crite	rion	3.281554
Log likelihood	-153.9187	Durbin-Watso	on stat	1.965834
Inverted AR Roots	.85	.11		
Inverted MA Roots	.41			

Model 2

Dependent Variable: SE	RIES01			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.854304	0.086835	9.838303	0.0000
MA(1)	-0.294178	0.135943	-2.163984	0.0329
MA(2)	-0.048162	0.121424	-0.396641	0.6925
R-squared	0.494160	Mean depender	nt var	-0.174202
Adjusted R-squared	0.483622	S.D. dependent	t var	1.638134
S.E. of regression	1.177154	Akaike info cri	terion	3.193911
Sum squared resid	133.0264	Schwarz criteri	on	3.272551
Log likelihood	-155.0986	Durbin-Watson	ı stat	1.997229
Inverted AR Roots	.85			
Inverted MA Roots	.41	12		

12. Write the estimated models for the following series.

Series	1
builds	Ŧ

Dependent Variable:	SERIES01			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-78.16783	501.0114	-0.156020	0.8760
AR (1)	1.610020	0.008702	185.0209	0.0000
AR(2)	-0.616464	0.008702	-70.84448	0.0000
R-squared	0.995075	Mean deper	ndent var	-58.50484
Adjusted R-squared	0.995074	S.D. depend	dent var	4162.713
S.E. of regression	292.1641	Akaike info	criterion	14.19287
Sum squared resid	6.99E+08	Schwarz cri	iterion	14.19544
Log likelihood	-58116.82	F-statistic		827096.1
Durbin-Watson stat	2.208966	Prob(F-stat	istic)	0.000000
Inverted AR Roots	.98	.63		

Series 2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.774125	0.010924	70.86718	0.0000
MA(1)	-0.265242	0.016638	-15.94151	0.0000
R-squared	0.392578	Mean deper	ndent var	-0.305861
Adjusted R-squared	0.392504	S.D. depend	lent var	371.3930
S.E. of regression	289.4713	Akaike info	criterion	14.17423
Sum squared resid	6.86E+08	Schwarz cri	terion	14.17595
Log likelihood	-58041.49	Durbin-Wat	son stat	1.997692
Inverted AR Roots	.77			
Inverted MA Roots	.27			

Series 3

Dependent Variable:	SERIES01			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(2)	0.988475	0.001648	599.7436	0.0000
MA(1)	0.120766	0.010562	106.1123	0.0000
MA(3)	-0.122652	0.010562	-11.61255	0.0000
R-squared	0.992215	Mean deper	ndent var	-58.50484
Adjusted R-squared	0.992213	S.D. depend	dent var	4162.713
S.E. of regression	367.3250	Akaike info	criterion	14.65074
Sum squared resid	1.10E+09	Schwarz cri	iterion	14.65331
Log likelihood	-59991.77	Durbin-Wat	tson stat	0.892310
Inverted AR Roots	.99	99		
Inverted MA Roots	.29	42	-1.00	

Series 4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.823213	0.013572	134.3349	0.0000
AR(2)	-0.828464	0.013416	-61.75404	0.0000
MA(1)	-0.334644	0.018897	-17.70896	0.0000
MA(3)	-0.078778	0.013710	-5.746101	0.0000
MA(4)	0.025864	0.012300	2.102713	0.0355
R-squared	0.995252	Mean deper	ndent var	-58.50484
Adjusted R-squared	0.995250	S.D. depend	dent var	4162.713
S.E. of regression	286.8942	Akaike info	o criterion	14.15671
Sum squared resid	6.74E+08	Schwarz cr	iterion	14.16099
Log likelihood	-57966.74	Durbin-Wa	tson stat	1.986695
Inverted AR Roots	.96	.86		
Inverted MA Roots	.44	.32	2137i	21+.37i

Chapter 5 Forecasting

Consider the process $\phi(B)X_t = \theta(B)Z_t$, $Z_t \approx WN(0, \sigma^2)$

Aim is to predict X_{n+l} , where *l* is the forecast horizon, with minimum mean squared error. Define the function

 $P_n X_{n+l} = \alpha_0 + \alpha_1 X_n + \alpha_2 X_{n-1} + ... + \alpha_n X_1$ which predicts X_{n+l} with minimum mean squared

error. Then,

$$\min q(\alpha_0, \alpha_1, \alpha_2, ..., \alpha_n) = q(\alpha) = E \left[\left[\left[X_{n+l} - P_n X_{n+l} \right]^2 \right] \right] \Rightarrow$$

$$\frac{\partial q(\alpha)}{\partial \alpha_j} = 0 \Rightarrow \frac{\partial q(\alpha)}{\partial \alpha_0} = 0 \Rightarrow E \left[\left[\left[x_{n+l} \right]^2 + \alpha_0 + \sum_{i=1}^n \alpha_i E \left[\left[x_{n+l-i} \right]^2 \right] \right] \right] \Rightarrow \hat{\alpha}_0 = \mu(1 - \sum_{i=1}^n \alpha_i)$$

$$\frac{\partial q(\alpha)}{\partial \alpha_j} = 0 \Rightarrow E \left[\left[X_{n+l} - P_n X_{n+l} \right] \right] X_{n+1-i} = 0 \Rightarrow E \left[\left[x_{n+l} - X_{n+1-i} \right]^2 \right] \Rightarrow \alpha_0 + \sum_{i=1}^n \alpha_i E \left[\left[x_{n+l} X_{n+1-i} \right]^2 \right] = 0$$

 $\Rightarrow \gamma_n(l) = P_n \alpha_n$, from the system of equations, α_n can be solved simultaneously. Here,

$$P_n = \left[(i - j) \right]_{j=1}^{\overline{n}}$$

$$\alpha_n = (\alpha_0, \dots, \alpha_n)$$

$$\gamma_n(l) = \left[(l) \gamma(l+1) \dots \gamma(l+n-1) \right]$$

Therefore, the mean square prediction error is

$$E \left[\mathbf{K}_{n+l} - P_n X_{n+l} \right]^2 = \gamma(0) - 2 \sum_{i=1}^n \alpha_i \gamma(l+i-1) + \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \gamma(j-i)$$
$$= \gamma(0) - \alpha'_n \gamma_n(l)$$

 $X_n(l)$ provides a good approximation to $P_n X_{n+l}$. Hence,

$$X_{n}(l) = P_{n}X_{n+l} = E \left[X_{n+l} \mid X_{n}X_{n-1}..X_{1} \right]$$

 X_{n+l} can be written in its causal and invertible forms:

$$X_{n+l} = \sum_{j=0}^{\infty} \psi_j Z_{n+l-j}, \quad \psi_0 = 1$$
$$Z_{n+l} = \sum_{j=0}^{\infty} \pi_j X_{n+l-j}, \quad \pi_0 = 0$$

Then

$$X_{n}(l) = E \left[\mathbf{K}_{n+l} \mid X_{n} X_{n-1} ... X_{1} \right] = \sum_{j=0}^{\infty} \psi_{j} E \left[\mathbf{K}_{n+l-j} \mid X_{n} X_{n-1} ... X_{1} \right]$$

Note that

 $E \mathbb{Z}_{n+j} \mid X_n X_{n-1} .. X_1 = Z_{n+j}$ for $j \le 0$; zero otherwise.

<u>The error in the forecast</u> $e_n(l)$ is:

$$e_n(l) = X_{n+l} - X_n(l)$$

$$e_n(l) = Z_{n+l} - \psi_1 Z_{n+l-1} + \dots + \psi_{l-1} Z_{n+1}$$

The Mean Square Prediction Error is

$$Var \left[\begin{matrix} n \\ n \end{matrix} \right] = Var \left[\begin{matrix} n \\ n+l \end{matrix} - X_n(l) \end{matrix} \right]$$

$$Var \left[\begin{matrix} n \\ n \end{matrix} \right] = Var \left[\begin{matrix} n \\ n+l \end{matrix} - \psi_1 Z_{n+l-1} + ... + \psi_{l-1} Z_{n+1} \end{matrix} \right] = \sigma^2 \sum_{j=0}^{l-1} \psi_j^2$$
The auto-covariance among the prediction errors is

$$\gamma(h) = E \left[X_{n+l} - X_n(l) \right] (X_{n+l+h} - X_{n+h}(l)) = \sigma^2 \sum_{j=0}^{l-1} \psi_j \psi_{j+k}$$

Example: Given AR(1) process with drift μ , predict X_{n+l} .

$$X_{t} - \mu = \phi(X_{t-1} - \mu) + Z_{t}$$

$$X_{n}(l) = E \left[\mu + \phi(X_{n+l-1} - \mu) + Z_{n+l} \mid X_{n}X_{n-1}..X_{1} \right] = \sum_{j=0}^{\infty} \phi^{j} E \left[\xi_{n+l-j} \mid X_{n}X_{n-1}..X_{1} \right]$$

<u>For *l*=1</u>

.

$$X_{n}(1) = E \left[\mu + \phi(X_{n} - \mu) + Z_{n+1} \mid X_{n}X_{n-1}...X_{1} \right] = \mu \sum_{j=0}^{\infty} \phi^{j} E \left[\xi_{n+1-j} \mid X_{n}X_{n-1}...X_{1} \right]$$

$$X_{n}(1) = \mu(1 - \phi) + E \left[\phi X_{n} \mid X_{n}X_{n-1}...X_{1} \right] + E \left[\xi_{n+1} \mid X_{n}X_{n-1}...X_{1} \right] = \mu + \phi(X_{n} - \mu)$$

or

$$\begin{split} X_{n}(1) &= \mu + \sum_{j=0}^{\infty} \phi^{j} E \left[\mathbf{k}_{n+1-j} \mid X_{n} X_{n-1} \dots X_{1} \right] \\ X_{n}(1) &= \mu + \phi^{0} E \left[\mathbf{k}_{n+1} \mid X_{n} X_{n-1} \dots X_{1} \right] + \phi^{1} E \left[\mathbf{k}_{n} \mid X_{n} X_{n-1} \dots X_{1} \right] + \phi^{2} E \left[\mathbf{k}_{n-1} \mid X_{n} X_{n-1} \dots X_{1} \right] + \dots \dots \\ X_{n}(1) &= \mu + \phi^{1} Z_{n} + \phi^{2} Z_{n-1} + \phi^{3} Z_{n-2} + \phi^{4} Z_{n-3} \dots \dots \\ X_{n}(1) &= \mu + \phi(Z_{n} + \phi Z_{n-1} + \phi^{2} Z_{n-2} + \phi^{3} Z_{n-3} \dots \dots) = \mu + \phi \sum_{j=0}^{\infty} \phi^{j} Z_{n-j} = \mu + \phi(X_{n} - \mu) \end{split}$$

For *l*=k

•

$$\begin{split} X_{n}(k) &= E \left[\mu + \phi(X_{n+k} - \mu) + Z_{n+k} \mid X_{n}X_{n-1}..X_{1} \right] = \mu + \sum_{j=0}^{\infty} \phi^{j} E \left[\mu_{n+k-j} \mid X_{n}X_{n-1}..X_{1} \right] \\ X_{n}(k) &= \mu + \phi^{k}(X_{n} - \mu) \end{split}$$

Prediction Error and its variance For *l*=1

$$e_{n}(1) = X_{n+1} - X_{n}(1) = \# + \phi(X_{n} - \mu) + Z_{n+1}] \# + \phi(X_{n} - \mu)] Z_{n+1}$$

$$Var \prod_{n}(1) = \sigma^{2}$$

 $\frac{\text{For } l=2}{e_n(2) = X_{n+2} - X_n(2)} = \frac{1}{2} + \phi(X_{n+1} - \mu) + Z_{n+2} \quad \exists \neq \phi^2(X_n - \mu) \quad \exists Z_{n+2} + \phi Z_{n+1}$ or $e_n(2) = Z_{n+1} + \psi_1 Z_n = Z_{n+1} + \phi Z_n$

$$Var\left[n(2)\right] = \sigma^2(1+\phi^2)$$

For *l*=k

$$e_{n}(k) = X_{n+k} - X_{n}(k) = 4 + \phi(X_{n+k-1} - \mu) + Z_{n+k}] 4 + \phi^{k}(X_{n} - \mu)]$$

or
$$e_{n}(k) = Z_{n+k} + \psi_{1}Z_{n+k-1} + \psi_{2}Z_{n+k-1} + \dots + \psi_{k-1}Z_{n+1} = Z_{n+k} + \phi Z_{n+k-1} + \phi^{2}Z_{n+k-1} + \dots + \phi^{k-1}Z_{n+1}$$

$$Var \left[k \right] = \sigma^{2} (1 + \phi^{2} + \phi^{4} + \dots + \phi^{2(l-1)}) \cdot \frac{(1 - \phi^{2})}{(1 - \phi^{2})}$$
$$Var \left[k \right] = \frac{\sigma^{2}}{(1 - \phi^{2})} (1 + \phi^{2} + \phi^{4} + \dots + \phi^{2(l-1)} - \phi^{2} - \phi^{4} - \dots - \phi^{2(l-1)} - \phi^{2l}) = \frac{\sigma^{2}}{(1 - \phi^{2})} (1 - \phi^{2l})$$

(1-a)x100% Prediction Limits

 $X_n(l) \pm z_{\alpha/2} \quad \forall ar \quad (l)$

For a 95% confidence interval for the prediction we take $z_{\alpha \! / 2}$ rounded to 2.

5.1. Forecast Updating

As the new observations become available, the forecasts have to be updated. Suppose we are at time n and predicting (l+1) steps ahead. Then

$$X_{n}(l+1) = E K_{n+l+1} | X_{n}X_{n-1}..X_{1} = \psi_{l+1}Z_{n} + \psi_{l+2}Z_{n-1} + \psi_{l+3}Z_{n-2} + \dots$$

After $(n+1)^{st}$ observation become available, we update the prediction of X_{n+l+1} as

$$X_{n+1}(l) = \psi_l Z_{n+1} + \psi_{l+1} Z_n + \psi_{l+2} Z_{n-1} + \dots = \psi_l Z_{n+1} + X_n(l+1)$$

$$X_{n+1}(l) = \psi_l \left[K_{n+1} - X_n(1) \right] + X_n(l+1)$$

Out of Sample Forecasts

To assess the forecasting performance of two proposed models, a holdback period of k is forecasted. The efficiency of the forecast for each model is performed based on the comparison of the Mean Square Prediction errors of those out of sample forecasts.

Example Yield data example. Forecast the series for l = 1,2,3 periods starting if

n=156.

 $X_{156} = 0.49; \quad \mu = 1.003$

Dependent Variable: YIELD	D_DATA			
Method: Least Squares				
Date: 01/21/08 Time: 00:	:14			
Sample (adjusted): 2 158				
Included observations: 157	after adjustmer	nts		
Convergence achieved afte	er 3 iterations			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.003013	0.079014	12.69410	0.0000
AR(1)	0.841074	0.042868	19.62019	0.0000
R-squared	0.712937	Mean depend	dent var	0.994586
Adjusted R-squared	0.711085	S.D. depende	ent var	0.292556
S.E. of regression	0.157251	Akaike info c	riterion	-0.849287
Sum squared resid	3.832832	Schwarz crite	erion	-0.810354
Log likelihood	68.66904	F-statistic		384.9517
Durbin-Watson stat	1.860085	Prob(F-statis	tic)	0.000000

 $\hat{X}_{156}(1) = 1.003 + 0.85(0.49 - 1.003) = 0.56$ $\hat{X}_{156}(2) = 1.003 + 0.85^2(0.49 - 1.003) = 0.62$ $\hat{X}_{156}(3) = 1.003 + 0.85^3(0.49 - 1.003) = 0.68$

$$\hat{\sigma}^{2} = 0.157251^{2} = 0.025$$

$$Var \left[156(1) \right] = 0.025 \left(\frac{1 - \hat{\phi}^{4}}{1 - \hat{\phi}^{2}} \right) = 0.025 \left(\frac{1 - 0.85^{4}}{1 - 0.85^{2}} \right) = 0.041$$

$$Var \left[156(3) \right] = 0.025 \left(\frac{1 - \hat{\phi}^{6}}{1 - \hat{\phi}^{2}} \right) = 0.025 \left(\frac{1 - 0.85^{6}}{1 - 0.85^{2}} \right) = 0.054$$

Suppose that $X_{157} = 0.7$ is observed. The Prediction updates are

$$\underbrace{\text{for } l=1}_{\text{for } l=2} \quad \hat{X}_{n+1}(1) = \psi_1 \, \mathbf{x}_{157} - \hat{X}_{156}(1) + \hat{X}_{156}(2) = 0.85(0.74 - 0.56) + 0.62 = 0.77$$

$$\underbrace{\text{for } l=2}_{\text{for } l=2} \quad \hat{X}_{n+1}(2) = \psi_1 \, \mathbf{x}_{157} - \hat{X}_{156}(1) + \hat{X}_{156}(3) = 0.85(0.74 - 0.56) + 0.68 = 0.81$$

5.2. Efficiency of Forecasting

One method of evaluating a forecasting technique uses the summation of the absolute errors. The mean absolute deviation (MAD) measure forecast accuracy by averaging the magnitudes of the forecast errors (absolute values of each error).

$$MAD = \frac{\sum_{i=1}^{n} \left| X_{i} - \hat{X}_{i} \right|}{n} = \frac{\sum_{i=1}^{n} \left| e_{i} \right|}{n}$$

The mean square prediction error (MSPE) is an alternative method for evaluating a forecasting technique. This approach provides a penalty for large forecasting errors as it squares each.

$$MSPE = \frac{\sum_{i=1}^{n} (X_i - \hat{X}_i)^2}{n} = \frac{\sum_{i=1}^{n} e_i^2}{n}$$

Mean absolute percentage error (MAPE) expresses errors in terms of percentages. This approach is useful when the size or the magnitude of the forecast variable is important in evaluating the accuracy of the forecast. MAPE provides and indication of how large the forecast errors are in comparison to the actual values in the series.. MAPE can also be used to compare the accuracy of the same different techniques on two entirely different series.

Sometimes it is necessary to determine whether a forecasting methods is biased (consistently forecasting low or high). The mean percentage error (MPE) is used in these cases. If the forecasting approach is unbiased MPE produce a percentage that is close to zero. If the result is a large negative percentage, the forecasting method is consistently

overestimating. If the result is a large positive percentage, the forecasting method is consistently underestimating.

Example: Suppose for the Yield data analyzed previously the following statistics calculated from residuals

MAD=1.3, MSPE=13.5, MAPE=6.95%, MPE=2.03%,

MAD indicates that each forecast deviated by an average of 1.3 amount. The MSE and MAPE would be compared to the MSE and MAPE of an alternative model. The one which yields the minimum would be preferred model. Finally, the small MPE 2.03% indicates that the technique is not biased.

To determine statistically if the MSPE of two models are different from the other, we use the statistic

$$F = \frac{\sum_{i=1}^{n} e_{1i}^{2}}{\sum_{i=1}^{n} e_{2i}^{2}} \approx F_{n,n} \quad \text{with the assumptions}$$

- i. The forecast errors have zero mean and are normally distributed
- ii. The forecast errors are serially uncorrelated

iii. The forecast errors are contemporaneously uncorrelated with each other

These assumptions may not be realized for the series as the multi-step forecasts produce serially correlated values. This leads the assumption on the distribution of the proportion of sum squared errors fails.

In order to overcome the contemporaneously correlated forecast errors, Granger-Newbold Test is used.

The Granger-Newbold Test: The null hypothesis claims that the forecast accuracy of linear combinations of the residuals are uncorrelated.

Let $Y_t = e_{1t} + e_{2t}$ and $W_t = e_{1t} - e_{2t}$ and $\rho_{YW} = E \begin{bmatrix} 2 \\ 1t \end{bmatrix} + e_{2t}$

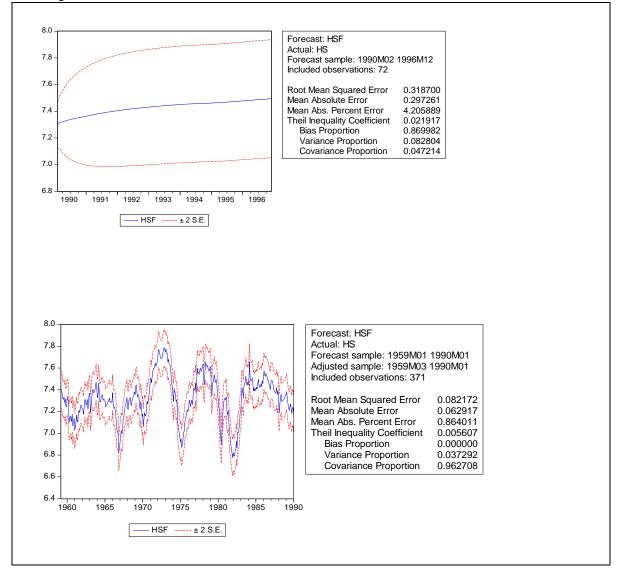
The model 1 has larger MSPE if ρ_{YW} is positive and model 2 has a larger MSPE

otherwise. Given the sample correlation coefficient $\hat{\rho}_{YW}$,

$$\frac{\hat{\rho}_{YW}}{\sqrt{(1-\hat{\rho}_{YW}^2)/n-1}} \approx t_{n-1}$$

Let $d_i = g(e_{1i}) - g(e_{2i})$, g) = being any function of the residuals and

Theil's Inequality Coefficient (TIC)

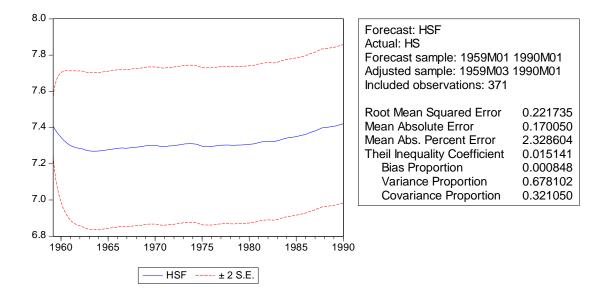

Variation in forecast lies between zero and one. A value of TIC being zero indicates a perfect fit. TIC and MAPE are scale invariant statistics.

Variation in the forecast can be decomposed into three parts: Bias, Variance and Covariance whose proportions relative to the variance sums up to one.

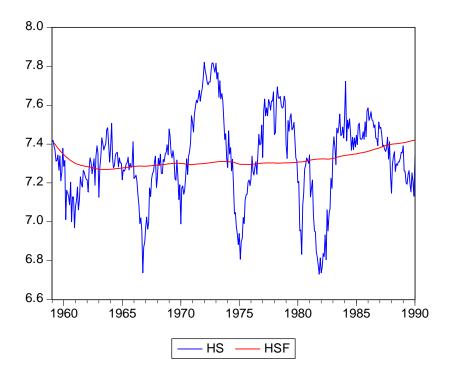
The bias proportion tells us how far the mean of the forecast is from the mean of the actual series. The variance proportion is the variation among the variances of forecast and actual series and covariance proportion measures the remaining unsystematic forecasting errors.

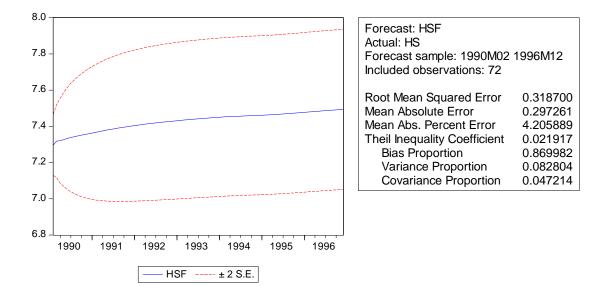
$$TIC = \frac{\sqrt{\frac{1}{h+1}\sum_{t=n+1}^{n+h} X_t - \hat{X}_t^2}}{\sqrt{\frac{1}{h+1}\sum_{t=n+1}^{n+h} X_t^2} \sqrt{\frac{1}{h+1}\sum_{t=n+1}^{n+h} \hat{X}_t^2}}$$

Example:

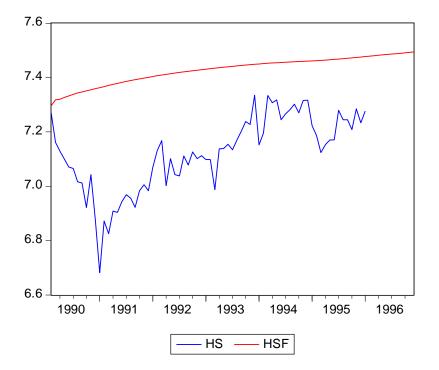

Example: The series contains the logarithm of monthly housing starts (HS) over the period 1959M01-1996M01, logarithm of the S&P index (SP) from 1959M01-1996M12. Estimation: HS on C, SP, lag of HS with an AR (1) using data from 1959M01-1990M01

Dependent Variable:	HS			
Method: Least Squar	es			
Date: 10/19/97 Ti	me: 21:59			
Sample(adjusted): 19	59:03 1990:01	l		
Included observation	s: 371 after ad	justing endpo	oints	
Convergence achieve	ed after 4 iterat	ions		
	Coefficient	Std. Error	t-Statistic	Prob.
С	0.321924	0.117278	2.744975	0.0063
HS(-1)	0.952653	0.016218	58.74157	0.0000
SP	0.005222	0.007588	0.688249	0.4917
AR(1)	-0.271254	0.052114	-5.205027	0.0000
R-squared	0.861373	Mean deper	ndent var	7.324051
Adjusted R-squared	0.860240	S.D. depend	S.D. dependent var 0.220996	
S.E. of regression	0.082618	Akaike info	Akaike info criterion -2.138453	
Sum squared resid	2.505050	Schwarz cri	Schwarz criterion -2.096230	
Log likelihood	400.6830	Hannan-Qu	Hannan-Quinn criter. 2.013460	
F-statistic	0.000000			
Inverted AR Roots	27			

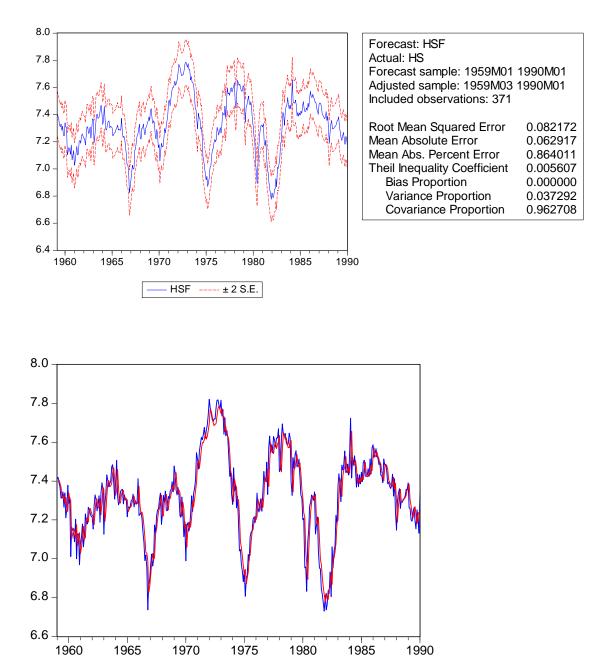

The fitted model is


1. Dynamic forecast: dynamic, multi-step forecasts starting from the 1st period in the forecast sample. Previously forecasted values for the lagged dependent variables are used in forming forecasts of the current value. This choice will only be available when the estimated equation contains dynamic components, e.g. lagged dependent variables or ARMA terms.

For the example we estimate the equation using data from 1959:01 to 1990:01. **In sample dynamic forecast**: from **1959:01 to 1990:01**

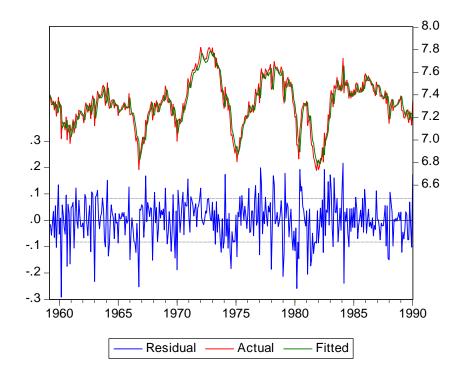


Sample adjustment: because we introduce the 1^{st} lag and AR term in the residuals, we can only estimate from 1959M03. The loss of 2 observations occurs because the residual loses one observation due to the lagged endogenous variable so that the forecast for the error term can begin only from the 3^{rd} observation.

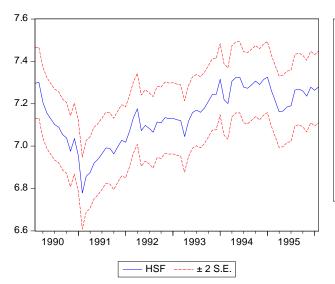


2. Out of sample dynamic forecast: from 1990:02 to 1996:12

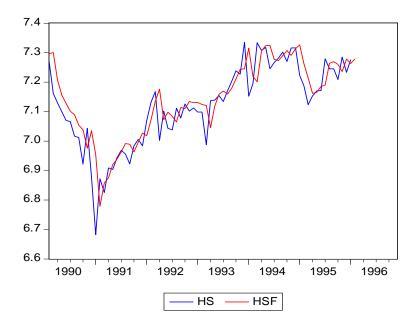
3. Static forecast: one-step-ahead forecasts, using the actual, rather than forecasted values for lagged dependent variables.



3.1 In sample static forecast:


The one-step ahead static forecasts are more accurate than the dynamic forecasts since the actual value of the lagged dependent variable is used in forming the forecast of HS. These **one-step ahead static forecasts are the same forecasts used in the Actual, Fitted, Residual Graph** displayed for the equation estimation below, i.e. the fitted value by estimation.

HSF


HS

3.2. Out of sample static forecast:

Forecast: HSF Actual: HS Forecast sample: 1990M02 Adjusted sample: 1990M02 Included observations: 72	
Root Mean Squared Error	0.070691
Mean Absolute Error	0.051155
Mean Abs. Percent Error	0.723547
Theil Inequality Coefficient	0.004955
Bias Proportion	0.091461
Variance Proportion	0.022643
Covariance Proportion	0.885896

Sample adjustment: For static forecast, we are responsible for the supply of the actual value for the lagged dependent variables. Since we only have data for HS until 1996M01, we can only do static forecast until 1996M02.

Exercises

- 1. Consider the model $X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + Z_{t} + \theta Z_{t-1}; \quad Z_{t} \sim WN$
- a. Obtain the *l*-step forecasts, l=1,2 recursively
- b. Obtain the forecast errors $e_n(l)$, l=1,2 and find their variances.
- 2. For the stationary and invertible ARMA(2,2) model with zero mean,
- a. Obtain recursively a. the first three forecasts
- b. The forecast errors and their variances

Chapter 6 Model Selection and Non-Stationary Time Series Model

Determination of the best suitable model for given observed series and choosing the appropriate model on order of p and q are very important as the forecasting and prediction will rely on the model chosen. ACF and PACF show specific properties for specific models. Hence, they can be used as a criteria to identify the suitable model. With messy data sample ACF and PACF plots become complicated and harder to interpret. The ideal is to choose the model having few parameters as possible. It will be seen that many different models can fit to the same data so that we should choose the most appropriate one. Box Jenkins approach gives a systematic algorithm to determine the best model.

6.1. The Box-Jenkins Approach

Box and Jenkins (1976) suggest a three-stage approach to pure time series modeling. These are identification, estimation and diagnostic checking.

At the identification stage, a tentative ARIMA model is specified that may approximate the data generating process for the given sample, through examination of the correlogram and the partial autocorrelation functions. Once a model has been tentatively identified, the next stage is to estimate its parameters. Once the tentative model has been estimated, a set of estimated residuals are automatically generated.

For example for an AR(1) model the estimated residuals are $\hat{Z}_t = X_t - \psi X_{t-1}$. If the fitted

model is correct, then this residual series should be approximately white noise. One the test of adequacy of the model thus includes testing for the whiteness of the fitted residuals using diagnostic checks such as the Box-Pierce or Ljung-Box portmanteau statistics.

If the estimated parameters of the fitted model are significantly different from zero and the fitted residuals appear to be approximate white noise, then the fitted model may be held to be adequate. If the model fails on either of these counts, then the identification stage should be returned to.

6.2. Testing the Dynamic Modeling (Diagnostic Checking)

1. Residual Analysis: As described above, residuals should have a random pattern and be modeled as white noise. If the Normal P-P plot of the residuals follow a normal distribution, the series is called a Gaussian process.

2. Overfitting : Having identified what is believed to be the correct model, we actually fit a more elaborate one. To conclude which model explains the series better we Akaike's Information Criterion (AIC) and Schwarz's Information Criterion (SIC) are compared for each model. The model having smaller value of AIC or SIC proposes a better fit.

Akaike's Information Criterion is

$$AIC = \ln \hat{\sigma}_k^2 + \frac{n+2k}{n}$$

where $\hat{\sigma}_k^2$ is the sample variance, k is the number of the parameters in the models and n is

the number of observations. The value of k yielding the minimum AIC specifies the best model. Corrected AIC (AICc) is a modified AIC for eliminating the bias.

$$AICc = \ln \hat{\sigma}_k^2 + \frac{n+k}{n-k-2}$$

Schwarz's Information Criterion (SIC) (Bayesian Information Criterion (BIC))

$$SIC = \ln \hat{\sigma}_k^2 + \frac{k \ln n}{n}$$

SIC does well getting the correct order in large samples, whereas AIC tends to be superior in small samples where the relative number of parameters is large.

6.3. Non-Stationary Processes

Many time series like stock prices behave as through they have no fixed mean. Even so, they exhibit homogeneity in the sense that apart from local level and/or trend, one part of the series behave like any other part. Models that describe such homogeneous nonstationary behavior can be obtained by supposing some suitable difference of the process to be stationary. These models are called Autoregressive Integrated Moving Average (ARIMA) processes.

Differencing operator, Δ :

$$\begin{split} \Delta X_t &= X_t - X_{t-1} = (1-B)X_t \\ \Delta^2 X_t &= \Delta(\Delta X_t) = X_t - X_{t-2} \\ &= \Delta(X_t - X_{t-1}) = (X_t - X_{t-1}) - (X_{t-1} - X_{t-2}) \\ &= (X_t - 2X_{t-1} + X_{t-2}) = (1 - 2B + B^2)X_t = (1 - B)^2 X_t \\ For \quad d \quad differencing \\ \Delta^d X_t &= (1 - B)^d X_t \end{split}$$

Integrated Models

Definition: $X_{t}_{t \in N}$ is said to be ARIMA(p,d,q) if $\nabla^d X_t = (1-B)^d X_t$ is ARMA(p,q). In another words, $\Phi(B)(1-B)^d X_t = \Theta(B)Z_t$

Then ARIMA(p,d,q) is an ARMA(p,q) series differenced d times.

ARIMA(1,1,1)

$$X_{t} - X_{t-1} = \psi(X_{t-1} - X_{t-2}) + Z_{t} + \theta Z_{t-1}$$

 $(1 - B)X_{t} = \psi(B - B^{2})X_{t} + Z_{t} + \theta Z_{t-1}$
 $((1 - B) - \psi(B - B^{2}))X_{t} = Z_{t} + \theta Z_{t-1}$
 $(1 - \psi B)(1 - B)X_{t} = Z_{t} + \theta Z_{t-1}$

ARIMA (p,d,q)

$$(1 - \psi_1 B - \psi_2 B^2 - \dots - \psi_p B^p)(1 - B)^d X_t = \sum_{i=0}^q \theta_i Z_{t-i}$$

Example:

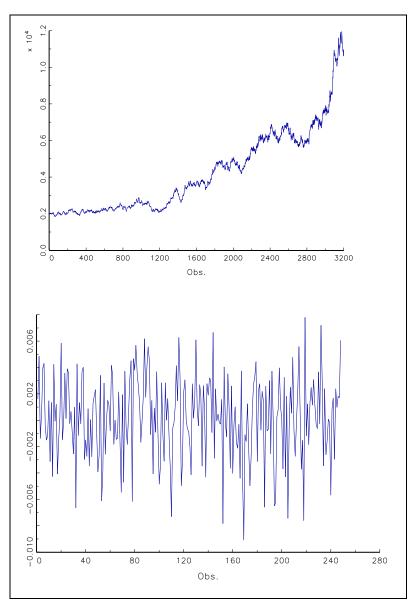


Figure 6.1. A series with trend on the left and the differenced data on the right

Example: Let $X_{t \in \mathbb{N}}$ be ARIMA(1,1,1). Then

$$\begin{split} & (X_t - X_{t-1}) = \phi(X_{t-1} - X_{t-2}) + Z_t + \theta Z_{t-1} \\ & \Phi(B)(1 - B)X_t = \Theta(B)Z_t \\ & \Phi(B)(1 - B) = (1 - B - \phi B - \phi B^2) \\ & \Theta(B) = (1 + \theta B) \end{split}$$

ARIMA(1,1,1) in causal form:

Let
$$X_t = \Psi(B)Z_t$$

 $\Phi(B)(1-B)\Psi(B) = \Theta(B)$
 $(1-B-\phi B-\phi B^2)(1+\psi_1 B+\psi_2 B^2+...) = (1+\theta B)$
 $B: \quad \psi_1 - 1 - \phi = \theta \Rightarrow \psi_1 = (1+\phi) + \theta$
 $B^2: \quad \psi_2 - \psi_1 - \phi \psi_1 + \phi = 0 \Rightarrow \psi_2 = \psi_1(1+\phi) + \phi$
 $B^3: \quad \psi_3 - \psi_1 - \phi \psi_2 + \phi \psi_1 = 0 \Rightarrow \psi_3 = \psi_1(1-\phi) + \phi \psi_2$
.....

ARIMA(1,1,1) in invertible form:

Let
$$Z_t = \Pi(B)X_t$$

 $\Phi(B)(1-B) = \Theta(B)\Pi(B)$
 $(1-B-\phi B-\phi B^2) = (1+\theta B)(1+\pi_1 B+\pi_2 B^2+...)$
 $B: -1-\phi = \pi_1 + \theta \Rightarrow \pi_1 = -(1+\phi+\theta)$
 $B^2: \phi = \pi_2 + \pi_1 \theta \Rightarrow \pi_2 = \phi - \pi_1 \theta$
 $B^3: \pi_3 + \theta \pi_2 = 0 \Rightarrow \pi_3 = -\theta \pi_2$
......

Example: Find the l-step ahead forecast for an ARIMA (1,1,1) process.

$$X_{t} = (1 + \phi)X_{t-1} - \phi X_{t-2} + Z_{t} + \theta Z_{t-1}$$

l-step ahead forecasts:

$$E\left[X_{n+l} | X_n, X_{n-1}, .., X_1\right] = E\left[(1+\phi)X_{n+l-1} - \phi X_{n+l-2} + Z_{n+l} + \theta Z_{n+l-1}) | X_n, X_{n-1}, .., X_1\right]$$

For *l*=1

$$\begin{split} X_{n}(1) &= E\Big[X_{n+1} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] = E\Big[((1+\phi)X_{n+1-1} - \phi X_{n+1-2} + Z_{n+1} + \theta Z_{n+1-1}) \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ X_{n}(1) &= (1+\phi)E\Big[X_{n} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] - \phi E\Big[X_{n+1} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ &+ E\Big[Z_{n+1} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] + \theta E\Big[Z_{n} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ X_{n}(1) &= (1+\phi)X_{n} - \phi X_{n-1} + \theta Z_{n} \\ \text{For } l=2 \\ X_{n}(2) &= E\Big[X_{n+2} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] = E\Big[((1+\phi)X_{n+2-1} - \phi X_{n+2-2} + Z_{n+2} + \theta Z_{n+2-1}) \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ X_{n}(2) &= (1+\phi)E\Big[X_{n+1} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] - \phi E\Big[X_{n} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ &+ E\Big[Z_{n+2} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] - \phi E\Big[X_{n} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ X_{n}(2) &= (1+\phi)E\Big[X_{n+1} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] + \theta E\Big[Z_{n+1} \Big| X_{n}, X_{n-1}, ...X_{1}\Big] \\ X_{n}(2) &= (1+\phi)X_{n}(1) - \phi X_{n} \end{split}$$

For *l*=k

$$X_n(k) = E [X_{n+k} | X_n, X_{n-1}, ..., X_1]$$

 $X_n(k) = (1+\phi) X_n(k-1) - \phi X_n(k-2)$

Example: Given ARIMA(1,1,0) process, the model is fitted to the past 50 observations and it is found that $\hat{\phi} = 0.40, \hat{\sigma} = 0.18$. Last two observations are $X_{49} = 33.4, X_{50} = 33.9$

- a. Calculate the minimum mean squared forecasts and 95% prediction intervals for the next 5 periods.
- b. A new observation $X_{51} = 34.2$ is observed. Update the forecasts.

a.
$$X_t = (1 + \phi) X_{t-1} - \phi X_{t-2} + Z_t$$

For l=1

_

$$X_{n}(1) = (1+\phi)E\left[X_{n} | X_{n}, X_{n-1}, .., X_{1}\right] - \phi E\left[X_{n+1} | X_{n}, X_{n-1}, .., X_{1}\right]$$
$$+ E\left[Z_{n+1} | X_{n}, X_{n-1}, .., X_{1}\right] = (1+\phi)X_{n} - \phi X_{n-1}$$

For l=2

$$X_{n}(2) = (1+\phi)E\left[X_{n+1}|X_{n}, X_{n-1}, .., X_{1}\right] - \phi E\left[X_{n}|X_{n}, X_{n-1}, .., X_{1}\right]$$
$$+ E\left[Z_{n+2}|X_{n}, X_{n-1}, .., X_{1}\right] = (1+\phi)X_{n}(1) - \phi X_{n}$$

For *l*=3,4,5,....

$$X_{n}(k) = E \Big[X_{n+k} \Big| X_{n}, X_{n-1}, ... X_{1} \Big]$$

$$X_{n}(k) = (1+\phi) X_{n}(k-1) - \phi X_{n}(k-2)$$

Estimates are: For
$$l=1,2,3,4,5$$

 $\hat{X}_n(1) = 1.4(33.9) - 0.4(33.4) = 34.1$
 $\hat{X}_n(2) = 1.4(34.1) - 0.4(33.9) = 34.18$
 $\hat{X}_n(3) = 1.4(34.18) - 0.4(34.1) = 34.212$
 $\hat{X}_n(4) = 1.4(34.212) - 0.4(34.18) = 34.2248$
 $\hat{X}_n(5) = 1.4(34.2248) - 0.4(34.212) = 34.22992$

The ψ coefficients are

$$(1 - B - \phi B - \phi B^{2})(1 + \psi_{1}B + \psi_{2}B^{2} + ...) = 1$$

$$B: \quad \psi_{1} - 1 - \phi = 0 \Rightarrow \psi_{1} = (1 + \phi)$$

$$B^{2}: \quad \psi_{2} - \psi_{1} - \phi \psi_{1} + \phi = 0 \Rightarrow \psi_{2} = \psi_{1}(1 + \phi) + \phi$$

$$B^{k}: \quad \psi_{k} = \psi_{k-1}(1 + \phi) - \phi \psi_{k-2}$$

$$\hat{\phi} = 0.40, \hat{\sigma} = 0.18 \Rightarrow \psi_{1} = 1.4, \psi_{2} = 1.56, \psi_{3} = 1.624, \psi_{4} = 1.6496$$

95% prediction interval for *l*-step ahead forecast is:

$$\begin{split} \hat{X}_{n}(l) &\pm (1.96\sqrt{Var(e_{n}(l))}) \\ \hat{X}_{n}(l) &\pm (1.96\hat{\sigma}\sqrt{1+\psi_{1}^{2}+\psi_{2}^{2}+..+\psi_{l-1}^{2}}) \\ \hat{X}_{n}(l) &\pm 1.96\hat{\sigma} \Rightarrow 34.1 \pm 0.3528 \\ \hat{X}_{n}(2) &\pm 1.96\hat{\sigma}\sqrt{1+\psi_{1}^{2}} \Rightarrow 34.18 \pm 0.6070 \\ \hat{X}_{n}(3) &\pm 1.96\hat{\sigma}\sqrt{1+\psi_{1}^{2}+\psi_{2}^{2}} \Rightarrow 34.212 \pm 0.8193 \\ \hat{X}_{n}(4) &\pm 1.96\hat{\sigma}\sqrt{1+\psi_{1}^{2}+\psi_{2}^{2}+\psi_{3}^{2}} \Rightarrow 34.2248 \pm 0.9998 \\ \hat{X}_{n}(5) &\pm 1.96\hat{\sigma}\sqrt{1+\psi_{1}^{2}+\psi_{2}^{2}+\psi_{3}^{2}+\psi_{4}^{2}} \Rightarrow 34.22992 \pm 1.1568 \end{split}$$

b. Forecast Updates are $\hat{X}_{n+1}(l) = \hat{X}_n(l+1) + \psi_l \left[X_{n+1} - \hat{X}_n(1) \right]$

$$\hat{X}_{51}(1) = \hat{X}_{50}(2) + \psi_1 \left[X_{51} - \hat{X}_{50}(1) \right] = 34.32$$
$$\hat{X}_{51}(2) = \hat{X}_{50}(3) + \psi_2 \left[X_{51} - \hat{X}_{50}(1) \right] = 34.368$$
$$\hat{X}_{51}(3) = \hat{X}_{50}(4) + \psi_3 \left[X_{51} - \hat{X}_{50}(1) \right] = 34.3904$$
$$\hat{X}_{51}(4) = \hat{X}_{50}(5) + \psi_4 \left[X_{51} - \hat{X}_n(1) \right] = 34.3949$$

Example:

Based on date of quarterly U.S. GNP from 1947(1) to 2002(3) with 223 observations, the data represent Real U.S. Gross National Product in billions of chained 1996 dollars and they have been seasonally adjusted. The data were obtained from the Federal Reserve Bank of St. Louis.

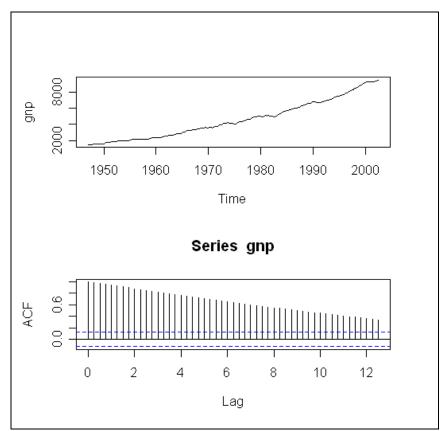


Figure 6.2 Plots of original series and its ACF

Regarding the plot of the original data and the relative ACF, it is not clear from the upper graph that the variance is increasing with time because that the strong trend hides any other effect.

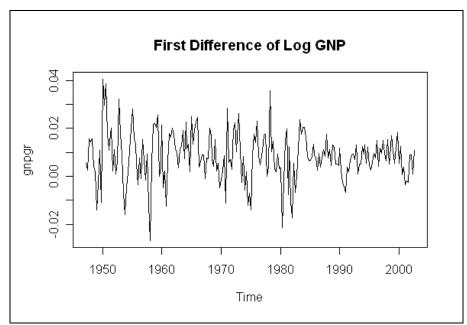


Figure 6.3. Plot of differenced data

For the purpose of the demonstration, the first difference of the logged data is displayed. Now the trend has been removed we are able to notice that the variability in the second half of the data is larger than in the first half of the data. Also, it appears as though a trend is still present after differencing.

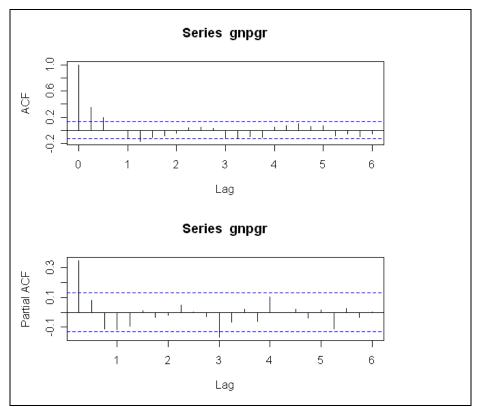


Figure 6.4 ACF of differenced data

The sample ACF and PACF of the quarterly growth rate are plotted in the upper figure. Inspecting the sample ACF and PACF, we might feel that the ACF is cutting off at lag 3 and the PACF is tailing off. This would suggest the GNP growth rate follows an MA(3) process, or log GNP follows an ARIMA(0, 1,3) model. Rather than focus on one model, we will also suggest that it appears that the ACF is tailing off and the PACF is cutting off at lag 1. This suggests an AR(1) model for the growth rate, or ARIMA(1, 1, 0) for log GNP. As a preliminary analysis, we will fit both models.

Using MLE to fit the **MA** (3) model for the growth rate (the first difference of log GNP), gnpgr, the estimated output is:

Coeffic	cients:			
	ma1	ma2	ma3	intercept
	0.3208	0.2478	0.0909	0.0083
s.e.	0.0662	0.0718	0.0701	0.0010

The variance is estimated as 8.853e-05: log likelihood = 720.78, aic = -1431.55

The estimated model MA(3)is

$$\hat{Y}_{t} = .008_{(.001)} + .321_{(.066)}Z_{t-1} + .248_{(.072)}Z_{t-2} + .091_{(.070)}Z_{t-3} + Z_{t}$$

where $\hat{\sigma}_{w} = 8.853e-05$ is based on 218 degrees of freedom. The values in parentheses are

the corresponding estimated standard errors. All of the regression coefficients are significant, including the constant.

Using MLE to fit the **AR** (1) model for the growth rate (the first difference of log GNP), gnpgr, the estimated output is:

Coef	ficients:	
	ar1	intercept
	0.3467	0.0083
s.e.	0.0627	0.0010

Variance estimated as 9.03e-05: log likelihood = 718.61, aic = -1431.22The estimated model AR(1) is:

$$\hat{Y}_{t} = .008_{(.001)} + .347_{(.063)}Y_{t-1} + Z_{t}$$

Plots of residuals for the model MA (3) in Figure 6.5 show that standardized residuals follow no obvious patterns. Notice that there are outliers, however, with a few values exceeding 3 standard deviations in magnitude. The ACF of the standardized residuals shows no apparent departure from the model assumptions, and the Q-statistic is never significant at the lags shown.

The upper figure shows a histogram of the residuals (top), and a normal Q-Q plot of the residuals (bottom). Here we see the residuals are somewhat close to normality except for a few extreme values in the tails.

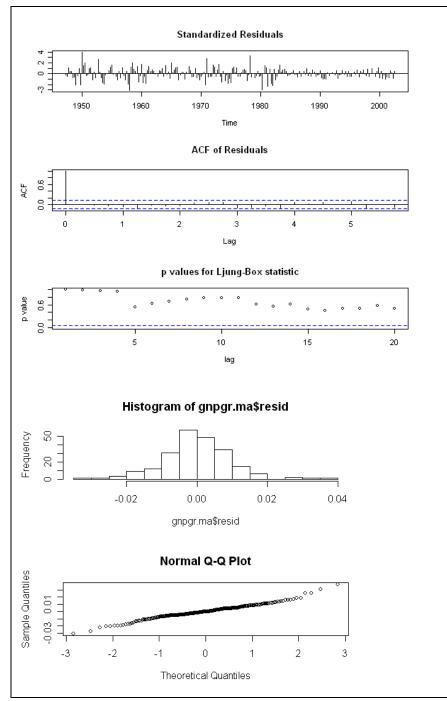


Figure 6.5 Residual Analysis of GDP series

6.4 Unit Roots in Time Series

The problem of unit root arises when either the AR or MA polynomial of ARMA has a root on or near the unit circle. A root near 1 in AR part is and indication that the data should be differenced, a root near 1 in MA part shows data were over-differenced.

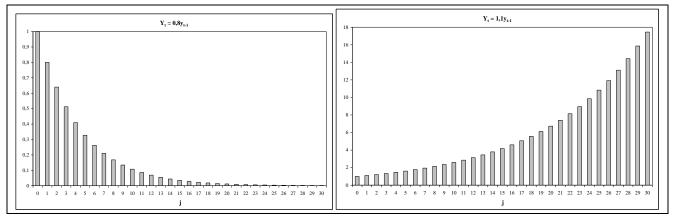


Figure 6.6. The impact of coefficient in AR(1) on the ACF (graph on the left φ =0.8; graph on right φ =1.1)

Let X_t be an AR(1) Process with drift μ .

$$\begin{split} X_t - \mu &= \phi \quad X_{t-1} - \mu \quad + Z_t, \qquad Z_t \sim WN(0, \sigma^2) \\ \text{for } \left|\phi\right| < 1 \Longrightarrow E \quad X_t \quad = \mu < \infty \end{split}$$

For large n, the sampling distribution of $\hat{\phi}_{MLE} \sim N(\phi, \frac{1-\phi^2}{n})$. However, the normality is not

applicable when $|\phi| = 1$ or $|\phi| > 1$. Therefore, we test statistically if

$$H_0: \phi = 1 \text{ vs. } H_A: \phi < 1$$

Rewriting the model in I(1) [integrated model with degree 1] gives

$$X_{t} - \mu = \phi \ X_{t-1} - \mu + Z_{t}$$
$$X_{t} = \mu(1 - \phi) + \phi X_{t-1} + Z_{t}$$

Subtracting X_{t-1} from both sides

$$\nabla X_{t} = X_{t} - X_{t-1} = \mu(1 - \phi) + \phi X_{t-1} + Z_{t} - X_{t-1}$$
$$\nabla X_{t} = \mu(1 - \phi) + (\phi - 1)X_{t-1} + Z_{t}$$
$$\nabla X_{t} = \alpha + \phi^{*}X_{t-1} + Z_{t}$$

where $\alpha = 1 - \phi$; $\phi^* = \phi - 1$. Now the hypothesis become

$$H_0: \phi^* = 0$$
 vs. $H_A: \phi^* < 0$

Dickey-Fuller Test statistic for AR(1) process

$$\hat{\tau} = \frac{\hat{\phi}^*}{\hat{\sigma}(\hat{\phi}^*)}$$

The limiting distribution of $\hat{\tau}$ has been derived and the tables of the percentiles of the distribution under H₀ is available. The test is rejected when $\hat{\tau}$ is too negative.

Table values by Dickey and Fuller are available, such as the model with drift will have critical values as follows:

Significance level	1%	5%	10%
Critical values without drift	-2.58	-1.95	-1.62
Critical values with drift	-3.43	-2.86	-2.57

Mac Kinnon Table also enables us to find the critical values for the ADF test based on the formula

$$K = \beta_{\infty} + \beta_1 T^{-1} + \beta_2 T^{-2}$$

In general for AR(p):

$$\begin{aligned} X_{t} - \mu &= \phi_{1} \quad X_{t-1} - \mu + \phi_{2} \quad X_{t-2} - \mu + \dots + \phi_{p} \quad X_{t-p} - \mu + Z_{t}, \qquad Z_{t} \sim WN(0, \sigma^{2}) \\ \nabla X_{t} &= \alpha + \phi_{1}^{*} X_{t-1} + \phi_{2}^{*} \nabla X_{t-2} + \dots + \phi_{p}^{*} \nabla X_{t-p} + Z_{t} \\ \alpha &= \mu(1 - \phi_{1} - \phi_{2} - \dots \phi_{p}); \quad \phi_{1}^{*} = (\sum_{i=1}^{p} \phi)_{i} - 1; \quad \phi_{j}^{*} = -\sum_{i=j}^{p} \phi_{i}, \quad j = 2, \dots p \end{aligned}$$

Having ∇X_t as an AR(p-1) process yields $H_0: \phi_1^* = 0$ vs. $H_A: \phi_1^* < 0$.

The test statistics $\hat{\tau} = \frac{\hat{\phi}_1^*}{\hat{\sigma}(\hat{\phi}_1^*)}$ keeping the same critical values for rejecting null

hypothesis.

Example: Given AR(3) with drift

Given $Z_t \sim WN(0, \sigma^2)$ $\nabla X_t = 0.1503 - 0.0041X_{t-1} + 0.9335\nabla X_{t-2} + 0.1548\nabla X_{t-3} + Z_t$ $\hat{\sigma}(\alpha) = 0.1135; \quad \hat{\sigma}(\phi_1^*) = 0.0028; \quad \hat{\sigma}(\phi_2^*) = 0.0707; \quad \hat{\sigma}(\phi_3^*) = 0.0708$ $H_0: \phi_1^* = 0 \text{ vs. } H_A: \phi_1^* < 0$ $\hat{\tau} = \frac{-0.0041}{1000} = -1.464 > -2.57 \Rightarrow \quad \text{At 10\% level of significance we fail to real$

 $\hat{\tau} = \frac{-0.0041}{0.0028} = -1.464 > -2.57 \rightarrow$ At 10% level of significance we fail to reject null

hypothesis. There exists Unit root.

Sequential test procedure:

- 1. Start with a relatively high number of lags, such as 10
- 2. Subsequently, reduce the number of lags until the last coefficient is significant different from zero at 10 % level of significance.
- 3. Compare the models (without drift and trend, with drift, and with drift and trend) by looking at the Akaike criterion. Then choose the model having the lowest Akaike criterion.
- 4. If the value of the test statistic is greater than (or in absolute values lesser than) the critical value, fail to reject the existence of unit root.

<u>The Phillips-Peron Test:</u> A nonparametric method of controlling for higher order serial correlation in the series. The test statistic follows a t-distribution asymptotically. Mac Kinnon table values are also used to test unit root.

Example: Given AR(3) without drift

Given $Z_t \sim WN(0, \sigma^2)$ $\nabla X_t = -0.0012 X_{t-1} + 0.9395 \nabla X_{t-2} - 0.1585 \nabla X_{t-3} + Z_t$ $\hat{\sigma}(\phi_1^*) = 0.0018; \quad \hat{\sigma}(\phi_2^*) = 0.0707; \quad \hat{\sigma}(\phi_3^*) = 0.0709$

$$H_0: \phi_1^* = 0$$
 vs. $H_A: \phi_1^* < 0$

 $\hat{\tau} = \frac{-0.0012}{0.0018} = -0.667 > -1.62 \rightarrow$ At 10% level of significance we fail to reject null hypothesis. There exists Unit root.

6.5. Detrended Series

Consider the following random walk model without drift

$$X_{t} = a + bt + Z_{t}, \qquad Z_{t} \sim WN(0, \sigma^{2})$$

$$\nabla X_{t} = (a + bt + Z_{t}) - (a + b(t - 1) + Z_{t-1}) = b + Z_{t} - Z_{t-1}$$

MA(1) part has unit root which destroys the stationarity.

Trend stationary time series are not mean stationary but include a trend. Including a trend component into the regression model, the process is expressed as $Y_t = a + bt + \beta X_t + Z_t$,

where X_t is a stationary process. Differencing this series increases variance of the error term. Therefore, by LSE of the trend, one can obtain, the stationary series $\hat{X}_t = \gamma \hat{Y}_t - (\hat{\alpha}_1 + \hat{\alpha}_2 t).$

Difference stationary time series (which are most of economic time series) contain a stochastic trend, differencing results in a stationary time series (see Figure 3.b).

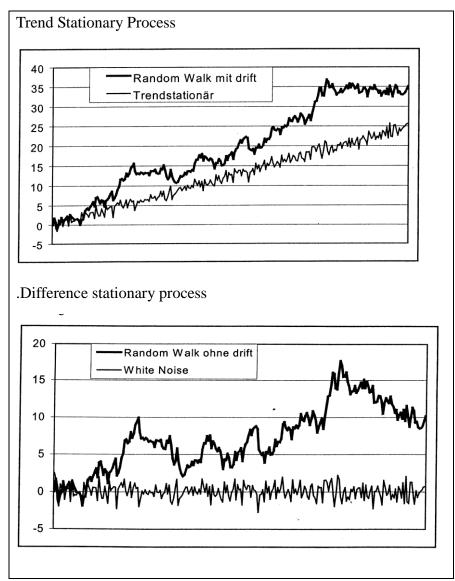
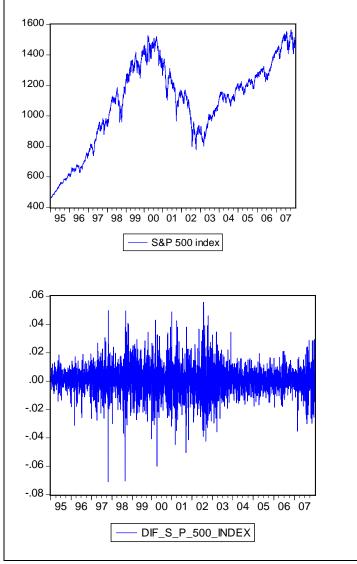


Figure 6.7. Examples to Trend and Difference stationary processes (source R.Fuess)


For stationarity of the error terms of the estimation equation $Y_t = a + \beta X_t + \epsilon_t$ the following rules are observed:

$Y_t \sim I(0)$ and $X_t \sim I(0)$	$\Rightarrow \varepsilon_{t} \sim I(0),$
$Y_t \sim I(1)$ and $X_t \sim I(0)$	$\Rightarrow \varepsilon_{t} \sim I(1),$
$Y_t \sim I(1)$ and $X_t \sim I(1)$	$\Rightarrow \varepsilon_t \sim I(1)$, if Y and X are not cointegrated,
$Y_t \sim I(1)$ and $X_t \sim I(1)$	$\Rightarrow \varepsilon_t \sim I(0)$, if Y and X are cointegrated.

The residuals are only then I(0) if both variables Y and X either are I(0) or I(1) and cointegrated. The simplest case of cointegration is given when Y and X are I(1) and the linear combination of both variables is I(0), i.e. the residuals are stationary.

Dickey and Fuller provide the appropriate test statistics to determine whether a series contains a unit root, a unit root plus drift, and/or a unit root plus drift plus a time trend.

For a series having a structural break point results in weakly dependent residuals. In such cases Phillips-Perron Test (1988) can be used to test the existence of unit root.

Example: S&P 500 index, Period: 02.01.1995 – 31.12.2007 daily data

Figure 6.8. Original and differenced series

Let y_t denote index of S&P 500 and Z_t denote white-noise $Y_t = \mu + \phi Y_{t-1} + Z_t$

Unit root test:

Ho: $\phi = 1$ S&P 500 index has unit root (not stationary)

H₁ $\phi < 1$ no unit root (stationary)

Null Hypothesis: S_P_	_500_INDH	EX has a unit	root					
Exogenous: Constant								
Lag Length: 0 (Autom	atic based	on SIC, MAX	(LAG=28)					
			t-Statistic	Prob.*				
Augmented Dickey-Fu	aller test sta	atistic	<u>-1.926797</u>	0.3201				
Test critical values:	-3.432187							
	5% level		-2.862237					
	10% level							
*MacKinnon (1996) o	ne-sided p-	values.						
Augmented Dickey-Fu	ıller Test E	quation						
Dependent Variable: D	O(S_P_500_	_INDEX)						
Method: Least Squares	8							
Date: 06/18/08 Tim	ne: 20:01							
Sample (adjusted): 1/0	3/1995 12/	/31/2007						
Included observations	3228 after	adjustments						
	Coefficie							
Variable	nt	Std. Error	t-Statistic	Prob.				
	0.001.40							
	-0.00149	0.000775	1.00(707	0.0541				
S_P_500_INDEX(-1)	3	0.000775		0.0541				
C	1.942350	0.872543	2.226080	0.0261				
R-squared	0.001149	Mean depe		0.312655				
Adjusted R-squared	0.000840	S.D. deper		12.18334				
S.E. of regression	12.17822	Akaike inf		7.837794				
Sum squared resid	478444.8	Schwarz cr	riterion	7.841561				
T 1'1 1'1 1	-12648.2			2 7125 47				
Log likelihood	0	F-statistic	·· ·· >	3.712547				
Durbin-Watson stat	2.086200	Prob(F-sta	tistic)	0.054093				

Null Hypothesis: DIF_S	P 500 IN	DEX has a u	nit root	
Exogenous: Constant				
Lag Length: 0 (Automat	ic based on	SIC, MAXL	AG=28)	
			t-Statistic	Prob.*
Augmented Dickey-Full	er test statis	stic	-59.09627	0.0001
Test critical values:	1% level		-3.432188	
	5% level		-2.862237	
	10% level		-2.567185	
	• 1 1	1		
*MacKinnon (1996) one	1			
Augmented Dickey-Full	-			
Dependent Variable: D(I	$DIF_S_P_5$	00_INDEX)		
Method: Least Squares				
	21:44			
Sample (adjusted): 1/04/				
Included observations: 3	227 after a	djustments		
X7 11	Coefficie			D 1
Variable	nt	Std. Error	t-Statistic	Prob.
DIF_S_P_500_INDEX(-1.03987			
-1)	2	0.017596	-59.09627	0.0000
C	0.000375	0.000190	1.973382	0.0485
R-squared	0.519901	Mean depe		-2.13E-06
Adjusted R-squared	0.519752	S.D. deper	ndent var	0.015557
				-6.22145
S.E. of regression	0.010781	Akaike inf	o criterion	1
				-6.21768
Sum squared resid	0.374839	Schwarz c	riterion	3
Log likelihood	10040.31	F-statistic		3492.369
Durbin-Watson stat	2.000633	Prob(F-sta	tistic)	0.000000

We do not reject $H_{\rm o}$ and can conclude Dif_S&P has no root and it is stationary

Example: A series of data on the Annual GDP of a country is log-transformed and differenced. The graphs of these three series are presented in Figure 6.9

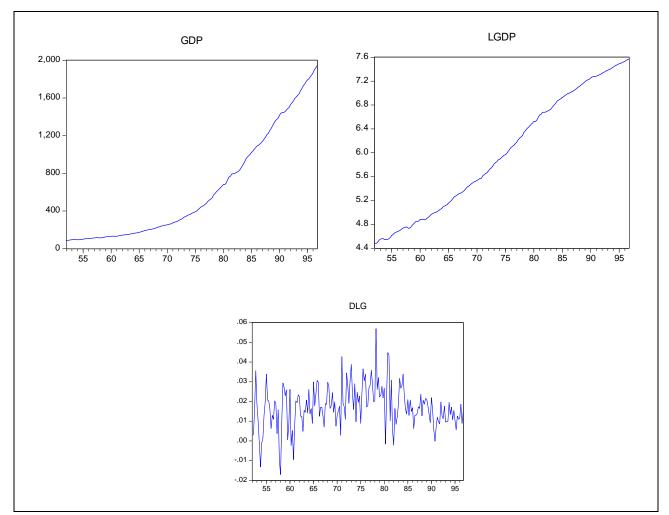


Figure 6.9 Graphs of GDP data having a log transformation and difference filter.

ACF log(GDP)

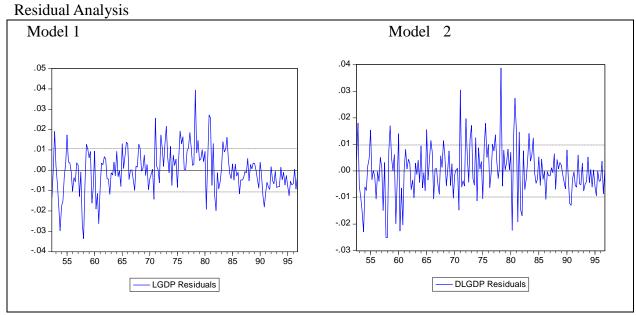
ACF Dlog(GDP)

luded observation:	S: 18U						Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			1	0.391	0.391	27.811	_
		1	0.986	0.986	178.09	0.000		1 11	2	0.220	0.079	36.663	
	111	2	0.973	-0.014	352.22	0.000	יםי	1 1	3		-0.007	38.673	
·	10	3	0.959	-0.011	522.39	0.000	1 🛛 1		4		0.011	39.392	
	1 1	4		-0.001	688.68	0.000	1	ן יםי	5		-0.058	39.440	
	11	5		-0.009	851.10	0.000			6	0.102	0.142	41.399	
	111	6		-0.011	1009.6	0.000	' 🗖	יים ו	7		0.097	45.636	
	111	7		-0.015	1164.2	0.000	' <u>P'</u>	ן יעי	8		-0.034	47.022	
	1 1	8		-0.021	1314.8	0.000			9	0.181	0.152		
	1	9			1461.4	0.000			10	0.251	0.151	65.331	
		10			1603.8	0.000			11	0.230	0.084	75.562	
		11			1742.1	0.000		ן ינןי	12		-0.055	77.675	
		12		-0.008	1876.4	0.000			13	0.120	0.041	80.485	
		13		-0.004	2006.8	0.000	i E		14	0.171	0.032	89.615	
	111	14		-0.006	2133.1 2255.6	0.000 0.000	i E		16	0.215	0.032	98.801	
	<u>'1'</u>	15		-0.010	2255.6				17	0.215		105.55	
	11	17		-0.011	2488.9	0.000			18	0.164		105.55	
	111	18		-0.010	2599.8	0.000		ini.	19			112.19	
	111	19		-0.013	2706.8	0.000		1 . .	20			115.91	
		20		-0.009	2810.0	0.000			21			116.27	
	i li	21		-0.007	2909.4	0.000	1 1		22	0.077		117.49	
	i li	22		-0.016	3005.1	0.000	111		23		-0.071	117.66	
		23		-0.012	3097.0	0.000		1 1	24			119.84	
	111	24		-0.019	3185.2		- b	1 1	25	0.126		123.18	
	i di i	25		-0.023	3269.7	0.000	1 6	ן וער	26			125.27	
	111	26	0.616	-0.018	3350.3	0.000	· 🗖		27	0.120	-0.003	128.32	
ı	111	27	0.599	-0.010	3427.3	0.000	1 🗖 1	1 1	28	0.110	0.017	130.94	
	1 1	28	0.583	-0.008	3500.6	0.000	ı 🖬	i]i	29	0.097	0.009	132.96	
· 🗖 🗌	1 1	29	0.567	-0.007	3570.3	0.000	101		30	-0.066	-0.198	133.92	
·	11	30	0.551	-0.010	3636.6	0.000	1 1		31	0.021	0.024	134.01	
	11	31	0.535	-0.015	3699.5	0.000	111	וםי	32	-0.017	-0.057	134.07	
· 🗖 📃	11	32	0.518	-0.012	3759.0	0.000	101	1 10	33	-0.051	-0.084	134.64	
	1 1	33	0.502	-0.005	3815.2	0.000	ւիւ	լ դի	34	0.049	0.041	135.17	
	11	34	0.486	-0.014	3868.1	0.000	1 þ 1	ן וםי	35	0.050	-0.055	135.74	
	11	35	0.470	-0.014	3917.9	0.000	ı þi		36	0.063	0.019	136.63	

Figure 6.10 ACF, PACF of log transformed series (left) and diffrenced log(GDP) (right)

Null Hypothesis: LGDI Exogenous: Constant Lag Length: 1 (Automa			3)		Null Hypothesis: Exogenous: Con: Lag Length: 0 (Au
			t-Statistic	Prob.*	
Augmented Dickey-Fu Test critical values:	ller test statisti 1% level 5% level 10% level		0.206904 -3.467205 -2.877636 -2.575430	0.9724	Augmented Dicke Test critical value
*MacKinnon (1996) on	ne-sided p-valu	es.			*MacKinnon (199
Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 05/13/09 Time:)(LGDP) s	ion			Augmented Dicke Dependent Varia Method: Least Sc
Sample (adjusted): 19 Included observations		istments			Sample (adjuste
Included observations	: 178 after adju Coefficient	Std. Error	t-Statistic	Prob.	Date: 05/13/09 1 Sample (adjuste Included observa
	: 178 after adju		t-Statistic 0.206904 5.629868 2.113632	Prob. 0.8363 0.0000 0.0360	Sample (adjuste

Lag Length: 0 (Automa			t-Statistic	Prob.*
Augmented Dickey-Ful		c	-8.831733	0.0000
Test critical values:	1% level 5% level		-3.467205 -2.877636	
	10% level		-2.677636	
*MacKinnon (1996) on	a-sidad n-yalu	0C		
Mackinion (1990) on	e-sided p-valu	63.		
Dependent Variable: D Method: Least Square: Date: 05/13/09 Time:	s			
Method: Least Square:	s 15:42 52Q3 1996Q4	stments		
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19	s 15:42 52Q3 1996Q4	istments Std. Error	t-Statistic	Prob.
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations DLG(-1)	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient -0.609023	Std. Error 0.068958	-8.831733	0.0000
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient	Std. Error		
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations DLG(-1) C R-squared	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient -0.609023 0.010620 0.307085	Std. Error 0.068958 0.001402 Mean depend	-8.831733 7.575367 Jent var	0.0000 0.0000 6.88E-05
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations DLG(-1) C R-squared Adjusted R-squared	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient -0.609023 0.010620 0.307085 0.303148	Std. Error 0.068958 0.001402 Mean depende S.D. depende	-8.831733 7.575367 dent var ent var	0.0000 0.0000 6.88E-05 0.011723
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations DLG(-1) C R-squared Adjusted R-squared S.E. of regression	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient -0.609023 0.010620 0.307085 0.303148 0.009786	Std. Error 0.068958 0.001402 Mean depende S.D. depende Akaike info cr	-8.831733 7.575367 dent var ent var iterion	0.0000 0.0000 6.88E-05 0.011723 -6.404533
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations DLG(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient -0.609023 0.010620 0.307085 0.303148 0.009786 0.0016855	Std. Error 0.068958 0.001402 Mean depend S.D. depende Akaike info cr Schwarz crite	-8.831733 7.575367 dent var ent var iterion rion	0.0000 0.0000 6.88E-05 0.011723 -6.404533 -6.368783
Method: Least Square: Date: 05/13/09 Time: Sample (adjusted): 19 Included observations DLG(-1) C R-squared Adjusted R-squared S.E. of regression	s 15:42 52Q3 1996Q4 : 178 after adju Coefficient -0.609023 0.010620 0.307085 0.303148 0.009786	Std. Error 0.068958 0.001402 Mean depende S.D. depende Akaike info cr	-8.831733 7.575367 dent var ent var iterion rion no criter.	0.0000 0.0000 6.88E-05 0.011723 -6.404533


Figure 6.11: Outputs of the Unit root tests

The Models Fitted

Γ

Model 1: AR(1)				Model 2	ARIMA	A(1,1,2)		
Dependent Variable: L Method: Least Square Date: 05/13/09 Time: Sample (adjusted): 19 Included observations Convergence achieved	s 16:36 52Q2 1996Q4 : 179 after adju	Istments			Dependent Variable: D Method: Least Squares Date: 05/13/09 Time: Sample (adjusted): 19: Included observations: Convergence achieved MA Backcast: 1952Q1 1	; 16:38 52Q3 1996Q4 178 after adju after 29 iterat			
	Coefficient	Std. Error	t-Statistic	Prob.		Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	-26.26741 1.000537	Schwarz criterion		0.5856 0.0000	C AR(1) MA(1)	0.017438 0.331161 0.028161	0.001248 0.277345 0.280826	13.96996 1.194039 0.100278	0.2341 0.9202
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.999887 0.999886 0.010655 0.020093 559.9911 1564277. 0.000000			5.999972 0.998870 -6.234537 -6.198924 -6.220096 1.211297	MA(2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.108431 0.161954 0.147505 0.009798 0.016705 572.7979 11.20865 0.000001	0.121545 Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion tion n criter.	0.3736 0.017393 0.010612 -6.390988 -6.319487 -6.361992 1.990762
Inverted AR Roots	1.00 Estimated A	R process is n	onstationary		Inverted AR Roots	.33 01+.33i	0133i		

Figure 6.12: Outputs of the plausible models

Figure 6.13: Residual plots of two models ACF of Residuals

MODEL 1

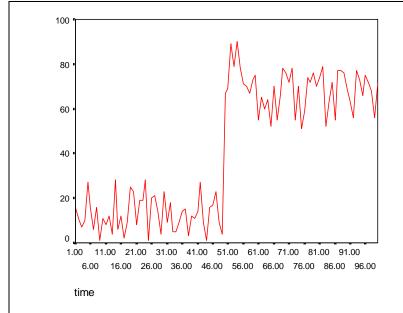
Date: 05/13/09 Time: 16:45 Sample: 1952Q2 1996Q4 Included observations: 179 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		es adjusted for 3 ARN				0.01-1	
' ⊨		1	0.389	0.389	27.610		Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
· 🗖 ·	יםי	2		0.078	36.277	0.000	1 1		1 1	0.004	0.004	0.0030	
' P '		3		-0.009	38.159	0.000	1 1	1 1			-0.000	0.0030	
יו		4		0.009	38.791	0.000	1 🛛 1	iĝi	3 1	0.034	0.034	0.2131	
111	יםי	5	-0.020		38.866	0.000	i 🏻 i		4 1	0.037	0.037	0.4676	0.4
יםי		6	0.099	0.142	40.704	0.000	C	•	-			3.0927	0.2
· 🗖 ·	יםי	7		0.097	44.808	0.000	i þi	יום י				3.8458	
יםי	1 10	8	0.083	-0.034	46.125	0.000	. P	'P			0.121	6.6553	
· 🖻	' 	9	0.180			0.000	I I I	וןי				7.2789	
· 🗖 ·	' 	10		0.151	64.226	0.000	ا <u>ا</u> ا	יםי				8.2887	0.2
· 🗖 ·	ים י	11	0.229	0.084	74.331	0.000	' 🗖					14.177	0.0
יםי	1 10	12	0.102	-0.056	76.337	0.000	· 🖻	' 				19.207	
· Þ	i]i	13	0.117	0.041	79.021	0.000	101					19.501	0.0
· 🗖 ·		14	0.168	0.150	84.557	0.000						19.701	0.0
· Þ	1 1	15	0.128	0.031	87.777	0.000	: P!	<u> </u>				22.245	
· 🗖 ·	· D	16	0.212	0.122	96.702	0.000					0.033	22.257	0.0
· 🗖 ·	1 1	17	0.181	0.007	103.23	0.000						25.780	
· 🗖 ·	iĝi	18	0.169	0.061	108.95	0.000						27.209 29.550	
ւիս	1 10	19	0.056	-0.056	109.57	0.000		l :P			0.104	30.174	
· 🗖	1 1	20	0.131	0.046	113.10	0.000	101				0.023	30.174	0.0 0.0
1 🛛 1	1 10 1	21	0.038	-0.077	113.39	0.000	; F '				-0.050	32.740	0.0
ւլը	i]i	22	0.073	0.040	114.49	0.000		1 1				33.044	0.0
1 🛛 1	1 10 1	23	0.025	-0.071	114.63	0.000	in i				-0.020	33.980	
ı 🗖 i	1 1	24	0.100	0.027	116.72	0.000					0.009	35.003	
ı 🗖	1 1	25	0.124	0.026	119.93	0.000						37.036	
1 1	1 10 1	26			121.87	0.000					-0.029	37.116	
· 🗖	1 1	27	0.116	-0.005	124.72	0.000	, ĥi				-0.040	37.750	
1 🗖 1	1 1	28	0.106	0.017	127.15	0.000	1 1					38.941	0.0
1 1	1 1	29	0.092	0.008	128.98	0.000	161	1 161			0.068	40.380	
In I		30	-0.071		130.08	0.000	∎ i	_				45.143	
111	1 1	31			130.14	0.000					0.009	46.419	
11	1 1				130.24	0.000	ı 🖬	1 10			-0.062	46.493	
u n lu	1 ml				130.90	0.000	ıd ı				-0.096	48.597	0.0
111		34			131.36	0.000	1 🛛 1	i]i			-0.001	49.001	0.0
		35			131.89	0.000	1 1	i <u>n</u> li			-0.074	49.222	0.0
		36			132.74		1 🗊 1	i]i				49.741	

MODEL 2

Date: 05/13/09 Time: 16:42 Sample: 1952Q3 1996Q4

6.6. Structural Breaks-Chow test


The aim is to determine if there exist a structural change in the relationship. Fit models separately for subsample to see if there are significant differences in the estimated equations. The steps are:

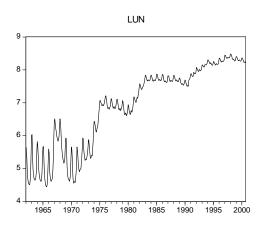
- 1. Partition of data set data into subsamples at times having significant structural breakpoints.
- 2. Estimate model over whole sample and save residual sum of squares
- 3. Estimate model with different coefficients before and after the date t_1 .
- 4. Calculate test statistics

$$F(t_1) = \frac{(T - 2k) \xi' \varepsilon - e'e}{(e'e)k}$$

where \mathcal{E} : residuals for unrestricted model, e: residuals of restricted model, T: no. of observations, k no. of parameters

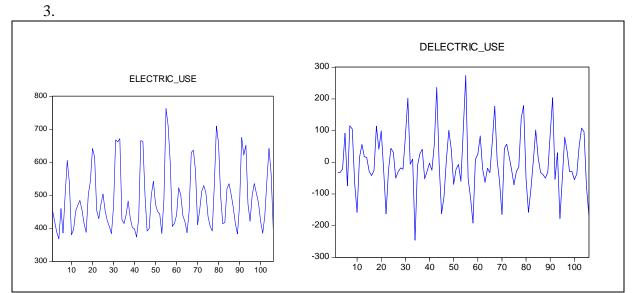
5. Conclude that the model is stable if F is below the critical value

Example: Given the series below, test if there exists any structural break.


Figure 6.14 Plot of the sries

Chow Breakpoint Test		probability
F-statistics	38.39	0.00
Log Likelihood ratio	65.75	0.00

Therefore, Ho: No structural changes is rejected!


Exercises:

1. Based on the output, determine and test if the following series whose plot is given below contain a structura break.

Varying regressors: All equation variables Equation Sample: 1962M01 2000M09							
F-statistic	1848.832	Prob. F(1,463)	0.0000				
Log likelihood ratio	747.7519	Prob. Chi-Square(1)	0.0000				
Wald Statistic	1848.832	Prob. Chi-Square(1)	0.0000				

2. Yearly electric use of a certain plant has been recorded and plotted as below. Based on the graphs and analyses given, test it the unit root exists and find the appropriate model for the series.

ACF

Original series

Date: 05/13/09 Time: 17:07 Sample: 1 106 Included observations: 106

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.524	0.524	29.881	0.000
		2	-0.144	-0.576	32.160	0.000
I	i ⊑ i	3	-0.476	-0.115	57.346	0.000
· ·	1 1 🕅 1	4	-0.322	0.063	68.975	0.000
111	1 1	5	0.021	-0.007	69.027	0.000
· 🗖	1 101	6	0.210	-0.037	74.067	0.000
יםי		7	0.057	-0.215	74.446	0.000
· ·		8	-0.299	-0.321	84.895	0.000
· ·		9		-0.200	111.36	0.000
· 🗖 ·		10	-0.164	0.166	114.55	0.000
· 🗖		11	0.441	0.395	137.95	0.000
		12	0.774	0.341	210.94	0.000
· 🗖	י די ו	13	0.442	-0.112	235.01	0.000
· 🗖 ·	י וףי	14	-0.148	-0.057	237.73	0.000
· ·	יום י	15	-0.441	0.068	262.18	0.000
· ·	ן ווי	16	-0.296	0.034	273.31	0.000
1 1	' '	17		-0.128	273.32	0.000
י 🗖 י	"	18		-0.160	276.26	0.000
יוןי	1 11	19		-0.008	276.34	0.000
· ·	1 11	20	-0.276	0.019	286.52	0.000
· ·	1 11	21	-0.423	-0.020	310.59	0.000
יםי	ים ו	22	-0.107	0.108	312.16	0.000
· 💻	1 11	23	0.422	0.024	336.66	0.000
	יםי	24	0.695	0.149	404.08	0.000
· 💻	יוםי	25		-0.076	423.82	0.000
· 🗖 ·	1 111	26	-0.144	0.021	426.78	0.000
· ·	1 1	27	-0.407		450.73	0.000
· ·	ים ו	28	-0.241	0.119	459.24	0.000
111	יםי ו	29	0.012	-0.101	459.26	0.000
ים י	1 1 1	30	0.132	-0.005	461.90	0.000
111	יון י	31	0.018	0.057	461.95	0.000
	ן יוףי	32	-0.243	0.056	471.07	0.000
· ·	1 1	33	-0.368	-0.024	492.34	0.000
יםי	1 11	34	-0.079	0.024	493.33	0.000
· 🗖	י ני	35	0.385	-0.063	517.28	0.000
	1 111	36	0.591	0.013	574.48	0.000

Differenced series

Date: 05/13/09 Time: 17:07 Sample: 1 106 Included observations: 105

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
· 🗖		1 0.219		5.1741	0.023
· ·	· •	2 -0.349	-0.417	18.450	0.000
	· •	3 -0.527		49.016	0.000
· ا	□ '	4 -0.208	-0.224	53.835	0.000
· 🗖 ·		5 0.155	6 -0.172	56.549	0.000
· 💻	1 111	6 0.370	0.016	72.124	0.000
· 🗖		7 0.228	0.038	77.997	0.000
□ ·	(C)	8 -0.193		82.301	0.000
	· •		'-0.418	113.60	0.000
· ·	· •	10 -0.315		125.36	0.000
· 🗖	– '	11 0.281		134.82	0.000
		12 0.712		196.10	0.000
· 🗖	יום י	13 0.293		206.61	0.000
· ·	יםי	14 -0.320		219.21	0.000
· · ·	1 1	15 -0.461		245.70	0.000
– –	יםי	16 -0.186		250.06	0.000
· 🖻 ·		17 0.156		253.18	0.000
· 🗖	1 1	18 0.293		264.29	0.000
· 🖻	1 10	19 0.198		269.39	0.000
· 🗖 ·	1 1	20 -0.162		272.88	0.000
	יםי ו	21 -0.493		305.39	0.000
– '	1 1	22 -0.229		312.50	0.000
· 🗖	יםי	23 0.262		321.92	0.000
	יויין ו	24 0.632		377.24	0.000
· 🗖 ·	יוףי	25 0.215		383.76	0.000
· ·	1 1	26 -0.255		393.00	0.000
	יםי ו	27 -0.450		422.12	0.000
יםי	ים ו	28 -0.112		423.95	0.000
י ד י	1 1	29 0.129		426.42	0.000
· 🗖	1 101	30 0.258		436.43	0.000
	1 1	31 0.158		440.25	0.000
יםי	1 1	32 -0.136		443.09	0.000
	1 1	33 -0.448		474.42	0.000
	ייפי	34 -0.188		479.99	0.000
	1 1		-0.013	491.61	0.000
	יםי	36 0.545	6 0.107	540.04	0.000

Null Hypothesis: ELECTRIC_USE has a unit root								
Exogenous: Constant								
Lag Length: 11 (Automatic based on SIC, MAXLAG=12)								
		t-Statistic	Prob.*					
Augmented Dickey-Fu	Augmented Dickey-Fuller test statistic							
Test critical values:	1% level	-3.501445						
	5% level	-2.892536						
	10%							
	level	-2.583371						

Null Hypothesis: D(ELECTRIC_USE) has a unit root								
Exogenous: Constant								
Lag Length: 10 (Automatic based on SIC, MAXLAG=12)								
	t-Statistic Prob.*							
Augmented Dickey-l	Fuller test statistic	-11.45223	0.0001					
Test critical values:	1% level	-3.501445						
	5% level	-2.892536						
	10% level	-2.583371						

MODEL 1: Dependent Varia	able: DIF_ELI	ECTRIC_USE		
Convergence ach	nieved after 3 i	terations		
Variable	Coefficient	Std. Error t-Stat	istic Prob.	
С	-0.501761	9.145950 -0.054	4862 0.9564	
AR(1)	0.004764	0.076082 0.062	621 0.9502	
AR(2)	-0.085144	0.075745 -1.124	4090 0.2640	
AR(3)	-0.202099	0.081909 -2.46	7361 0.0155	
AR(12)	0.638938	0.082295 7.764	024 0.0000	
R-squared	0.641363	Mean dependent v	var -0.763441	
Adjusted R-squared	0.625061	S.D. dependent va	ur 92.56389	
S.E. of regression	56.67897	Akaike info criter	ion 10.96495	
Sum squared	202200 5			
resid	282700.5	Schwarz criterion	11.10111	
Log likelihood	-504.8701	F-statistic	39.34330	
Durbin-Watson stat	2.614008	Prob(F-statistic)	0.000000	
Inverted AR Roots	.94	.8250i .82-	⊦.50i .4986i	
	.49+.86i	.02+.97i .02-	.97i47+.83i	
	4783i	84+.47i84-	47i97	

Model 2:			
		Std.	
Variable	Coefficient	Error t-Statistic	Prob.
С	-1.081713	1.127498 -0.959393	0.3400
AR(1)	0.346492	0.085281 4.062930	0.0001
AR(2)	-0.235234	0.077020 -3.054188	0.0030
AR(12)	0.645663	0.073520 8.782100	0.0000
MA(1)	-0.973815	0.017299 -56.29357	0.0000
R-squared	0.744881	Mean dependent var	-0.763441
Adjusted			
R-squared	0.733285	S.D. dependent var	92.56389
S.E. of		Akaike info	
regression	47.80414	criterion	10.62437
Sum squared			
resid	201100.8	Schwarz criterion	10.76053
Log likelihood	-489.0330	F-statistic	64.23428
Durbin-Watson			
stat	1.803597	Prob(F-statistic)	0.000000

Residual Analyses

Model 1

Model 2

AC PAC Q-Stat Prob

Da	e: 05/13/09 Time: 17:13
Sa	nple: 14 106
In	uded observations: 93
Q-	tatistic probabilities adjusted for 4 ARMA tern

Autocorrelation Partial Correlation

rm(s)				Date: 05/13/09 Time: 17:11 Sample: 14 106 Included observations: 93 Q-statistic probabilities adjusted for 4 ARMA term(s)						
AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC				
0.083	0.083	0.6636				1 -0.311				

					1 -0.311 -0.311	9 3092
ן יום י	1 🖬 1	1 0.083 0.083 0.6636			2 -0.021 -0.130	
· 🗩 🛛	· 🗩	2 0.182 0.176 3.8771			3 -0.033 -0.091	
10	101	3 -0.048 -0.078 4.1040	i d i		4 -0.057 -0.115	
1 1	10	4 -0.004 -0.027 4.1052			5 -0.098 -0.188	
101	1 🚺 1	5 -0.063 -0.039 4.4974 0.034	:¶:		6 -0.007 -0.149	
1 1	111	6 0.003 0.013 4.4981 0.105				10.890 0.012
1 1	1 1 1	7 0.025 0.043 4.5608 0.207			8 0.037 -0.021	
1 1	1 1	8 0.017 0.003 4.5925 0.332			9 -0.036 -0.080	
101	101	9 -0.095 -0.116 5.5479 0.353	: <u>-</u> :	1 7		
		10 -0.246 -0.248 11.993 0.062			10 -0.138 -0.254	
		11 -0.030 0.049 12.090 0.098	· •		11 0.176 -0.002	
	່ງໜີ່ເ	12 -0.209 -0.138 16.840 0.032	' H '		12 -0.138 -0.154	
	101	13 -0.070 -0.087 17.383 0.043				23.373 0.005
		14 -0.147 -0.114 19.801 0.031	' L		14 -0.175 -0.166	
I	1 1	15 0.079 0.078 20.509 0.039			15 0.190 0.091	
E	1	16 -0.059 -0.042 20.913 0.052		'¶'	16 -0.112 -0.057	
, b ,		17 0.047 0.014 21.175 0.070			17 0.035 0.053	
in i	un i	18 -0.080 -0.084 21.934 0.080		ייםי	18 -0.078 -0.070	
1	101	19 -0.040 -0.112 22.123 0.105		<u>'</u>	19 -0.016 -0.085	
	111	20 -0.018 -0.017 22.164 0.138	'4'	י ב י	20 -0.064 -0.166	
		21 0.014 0.014 22.187 0.178		יםי	21 -0.017 -0.135	
. <u>6</u> .	1 1	22 0.141 0.056 24.653 0.135	· P'	י ני די	22 0.106 -0.040	
1 1	11	23 0.084 -0.011 25.542 0.143		' ! '	23 -0.007 -0.015	
1 61	1	24 0.145 0.044 28.223 0.104	· •	י ון י	24 0.075 -0.055	
	11	25 -0.029 -0.044 28.329 0.131	· 🛛 ·		25 0.079 0.201	36.680 0.018
		26 -0.096 -0.193 29.556 0.130		']'	26 -0.012 0.000	36.700 0.026
		27 -0.174 -0.148 33.623 0.071	· · · ·	ין י	27 -0.178 -0.027	
	ี เป็น	28 0.031 0.029 33.756 0.089	יםי	ן יני		43.115 0.010
1 1	1 1	29 -0.022 -0.003 33.825 0.112		ין י	29 -0.078 0.045	
. j .	101	30 0.039 -0.061 34.040 0.134	1 1 1	וןיין	30 0.020 -0.045	
1	101	31 -0.030 -0.071 34.164 0.161	111		31 -0.018 0.027	
	101	32 -0.020 -0.051 34.221 0.194	1 1 1	']'	32 0.015 -0.020	
	101	33 -0.115 -0.098 36.177 0.168		יםי	33 -0.090 -0.093	
	ינוי	34 -0.027 0.056 36.286 0.199		י נוי	34 -0.004 -0.061	45.282 0.036
1	1.	35 -0.033 -0.045 36.449 0.230	יםי	' '	35 -0.062 -0.152	
· 🖬 🔰	· 🕞	36 0.212 0.180 43.404 0.086		ים י	36 0.212 0.102	52.852 0.012

Chapter 7 Seasonal ARIMA Models

Dependence on the past tends to occur most strongly at multiples of seasonal lag s. For example, monthly economical data is expected to have a seasonal effect of lag 12 a strong component, or temperature having a seasons of three months etc.

Definition: $X_{t \in N}$ is said to be **pure Seasonal** ARMA(P,Q)_s having form

$$\Phi(B^s)X_t = \Theta(B^s)Z_t$$

where

$$\Phi(B^{s}) = (1 - \Phi_{1}B^{s} - \Phi_{2}B^{2s} - ... - \Phi_{p}B^{p_{s}}); \Theta(B^{s}) = (1 - \Theta_{1}B^{s} - \Theta_{2}B^{2s} - ... - \Theta_{Q}B^{Q_{s}})$$

Example 1: For a stationary ARMA(1,0)₃, P=1, Q=0, s=3

$$(1 - \Phi B^3)X_t = Z_t \Longrightarrow X_t = \Phi X_{t-3} + Z_t$$

State the conditions for stationarity:

$$1 - \Phi B^3 = 0 \Longrightarrow B = \frac{1}{\sqrt[3]{\Phi}} \Longrightarrow |\Phi| < 1$$

Find the first 4 PACF values.

$$\gamma(h) = Cov(\Phi X_{t-3} + Z_t, X_{t-h})$$

By Yule Walker equations

$$\gamma(0) = \Phi \gamma(3) + \sigma^{2}$$
$$\gamma(1) = \Phi \gamma(2)$$
$$\gamma(2) = \Phi \gamma(1)$$
$$\gamma(3) = \Phi \gamma(0)$$
$$\gamma(4) = \Phi \gamma(1)$$

Replacing $\gamma(2) = \Phi \gamma(1)$ in $\gamma(1)$ we find $\gamma(2) = 0$, $\gamma(1) = 0$, $\gamma(4) = 0$

$$\gamma(3) = \Phi \gamma(0) = \frac{\Phi \sigma^2}{1 - \Phi^2}$$

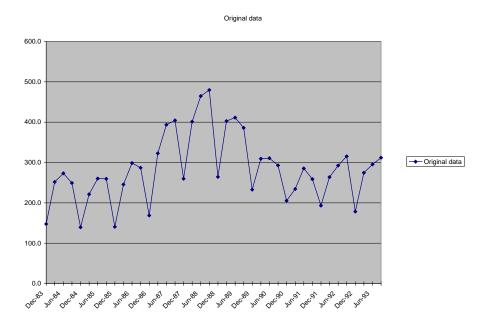
Therefore, $\rho(2) = \rho(1) = \rho(4) = 0$, $\rho(3) = \Phi$

PACF's

$$\phi_{11} = \rho(1) = 0; \quad \phi_{22} = \frac{\rho(2) - \rho(1)^2}{1 - \rho(1)^2} = 0$$

 $\phi_{33} = \Phi; \quad \phi_{44} = 0 \quad \text{by cut - off property}$

Definition: $X_{t \to N}$ is said to be **Integrated Seasonal** ARIMA (p,d,q)x(P,D,Q)_s having


form $\phi(B)\Phi(B^s)(1-B)^d(1-B^s)^D X_t = \theta(B)\Theta(B^s)Z_t$

where

 $\Phi(B^{s}) = (1 - \Phi_{1}B^{s} - \Phi_{2}B^{2s} - ... - \Phi_{p}B^{p_{s}})$ $\Theta(B^{s}) = (1 - \Theta_{1}B^{s} - \Theta_{2}B^{2s} - ... - \Theta_{Q}B^{Q_{s}})$ $\phi(B) = (1 - \phi_{1}B - \phi_{2}B^{2} - ... - \phi_{p}B^{p})$ $\theta(B) = (1 - \theta_{1}B - \theta_{2}B^{2} - ... - \theta_{q}B^{q})$

Example 2: ARMA $(1,0)_3$ can also be expressed as ARIMA $(1,0,0)x(0,0,0)_3$

Example 3: ARIMA(0,0,0)x(1,1,0)₃ $(1 - \Phi B^3)(1 - B^3)X_t = Z_t \Rightarrow X_t - X_{t-3} = \Phi(X_{t-3} - X_{t-6}) + Z_t$ Example 4: ARIMA(0,0,0)x(1,1,1)₃ $(1 - \Phi B^3)(1 - B^3)X_t = (1 + \Theta B^3)Z_t \Rightarrow X_t - X_{t-3} = \Phi(X_{t-3} - X_{t-6}) + Z_t + \Theta Z_{t-3}$ Example 5: ARIMA(0,1,0)x(1,0,1)₃ $(1 - \Phi B^3)(1 - B)X_t = (1 + \Theta B^3)Z_t \Rightarrow X_t - X_{t-1} = \Phi(X_{t-3} - X_{t-4}) + Z_t + \Theta Z_{t-3}$

Example 7: On Outbord Marine Data quarterly collected from Dec. 1983 to Sept. 1993

Figure 7.1. Time series graph of the data

Original series

Differenced series

Date: 06/21/08 Time: 16:47 Sample: 1983Q4 1993Q3 Included observations: 40

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Date: 06/21/08 Tim Sample: 1983Q4 199	ie: 17:02 93Q3				
		1 0.421	0.421	7.6500		Included observation	s: 39				10
		2 0.194	0.020	9.3177	0.009	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		4 0 733	0.272	38.819				000706	0.0000000	10110000	526545.5 Ye
		1 0.100	-0.619				I I I I I I I I I I I I I I I I I I I	1 -0.275	-0.275	3.1868	0.074
		6 -0.119						2 -0.307	-0.414	7.2547	0.027
1 1 1	1 1	7 -0.052	-0.216	41.172	0.000			3 -0.282			0.013
		8 0.297	-0.100	45.816	0.000			4 0.836			0.000
1 🗖 1		9 -0.193	-0.143	47.831	0.000		│ ╎_┦╎	5 -0.200		44.582	0.000
· ·	I I I I	10 -0.442						6 -0.316			
	I I I I	11 -0.347	0.056					7 -0.254			0.000
	▎▕▕▕▌▌	12 0.028	0.124	65.769				9 -0.177		80.480	0.000
	' \ '		-0.033	73.877	0.000			10 -0.288		85.055	
	1 141	14 -0.509	0.057	90.624				11 -0.260			0.000
		16 0.014		100.65					-0.056		
i i i		17 -0.262	0.011	105.65			1 1 1	13 -0.153	-0.069	114.60	0.000
		18 -0.341	0.024	114.54			יםי	14 -0.217	0.089	117.61	0.000
1 🗖 1		19 -0.216				1	י ון י	15 -0.242			0.000
1 1 1		20 0.130	-0.175	119.68	0.000		וםי	16 0.540	-0.078	141.81	0.000

MULTIPLICATIVE MODEL (Classical)

Year	Data	Seasonal Adjusted	Year		Seasonally Adjusted
12/ 1983	147.6	210.7279544	3/1988	259.7	370.7726948
3/1984	251.8	240.9128147		401.1	383.7574662
	273.1	230.5266085		464.6	392.173791
	249.1	216.0401135		479.7	416.0354977
	139.3	198.8780762	3/1989	264.4	377.4828668
3.1995	221.2	211.6358801		402.6	385.19261
	260.2	219.6375816		411.3	347.1826953
	259.5	225.0598533		385.9	334.684383
	140.5	200.5913116	3/1989	232.7	332.2248982
3/1986	245.5	234.8852105		309.2	295.8309862
	298.8	252.2202513		310.7	262.2651676
	287	248.9101268		293	254.1138228
	168.8	240.9951131	Unnormalized	Normalized	
3/1987	322.6	308.6516046	Seas. Index	Seas. Index	
	393.5	332.1575264	115.872%	116.0504%	
	404.3	350.6423842	112.776%	112.9497%	
3/1988	259.7	370.7726948	68.508%	68.6136%	
	401.1	383.7574662	<u>102.229%</u>	102.3863%	
			399.385%	400.0000%	

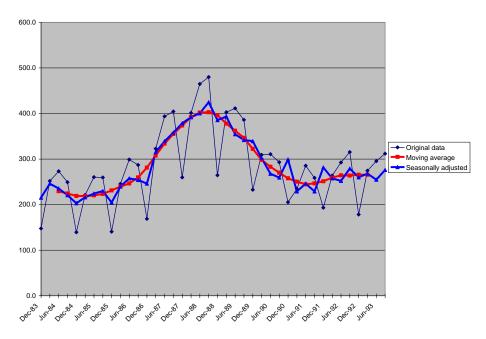
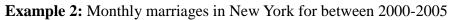



Figure 7.2. Seasonally adjusted series and MA series

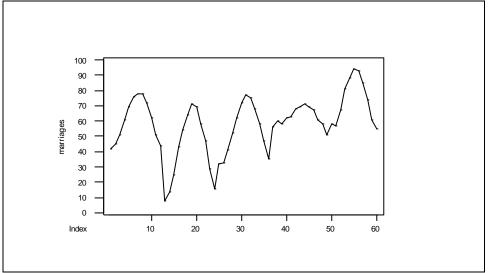
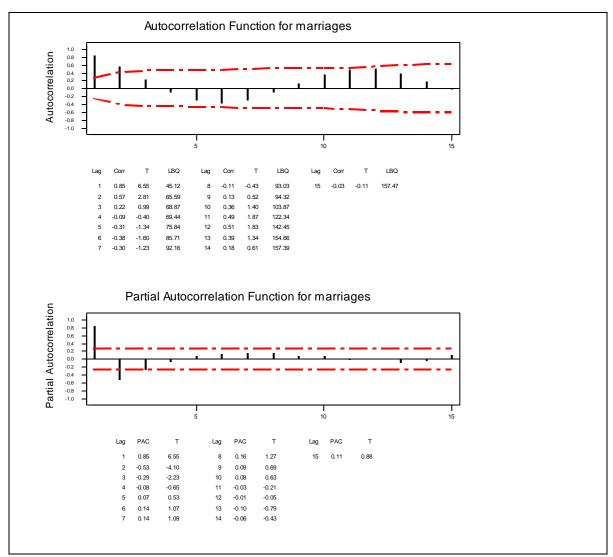
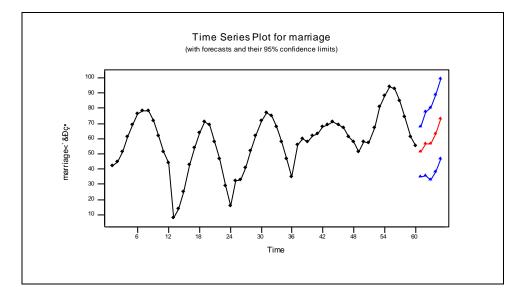
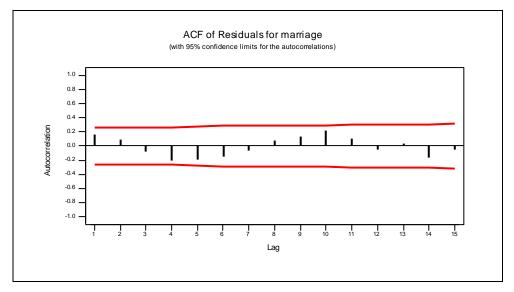
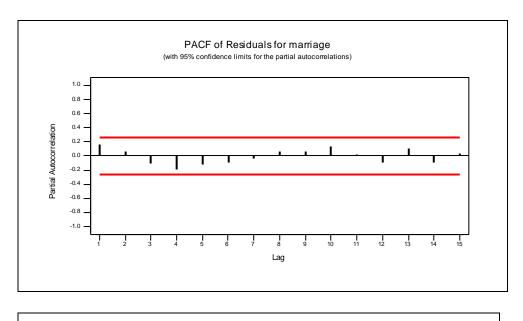



Figure 7.3 Plot of the original series


ARIMA Model: marriages


Final Estimates of Parameters


Туре	Coef	SE Coef	Т	Р	
AR 1	0.8201	0.0778	10.53	0.000	
SAR 12	0.6469	0.1161	5.57	0.000	
Constant	4.003	1.077	3.72	0.000	
Mean	62.99	16.95			
Number of o	bservation	s: 60			
Residuals:	SS = 39	907.02 (bac	kforecast	s excluded)	
	MS = 0	58.54 DF =	57		
Modified Bo	ox-Pierce (l	Ljung-Box)	Chi-Squai	e statistic	
Lag	12	24	36	48	
Chi-Square	15.5	33.4	44.8	63.4	
DF	9	21	33	45	
P-Value	0.079	0.042	0.082	0.037	

Forecasts from	n period 60
-----------------------	-------------

		95 Percen	t Limits	
Period	Forecast	Lower	Upper	Actual
61	51.3288	35.0984	67.5592	
62	56.5594	35.5695	77.5493	
63	56.4888	32.8306	80.1469	
64	63.4298	38.1350	88.7246	
65	72.8732	46.5350	99.2115	

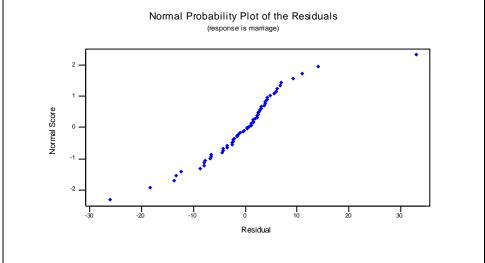


Figure 7.4 Plots of the Residual analyses

Example: Differenced data follow significant dependence on the observations at every lag 4. There is not significant effect of AR or MA parts. Therefore, the model which fits best to the data is $ARIMA(0,1,0)x(0,0,0)_4$.

$$(1 - \Phi B^4)(1 - B)X_t = Z_t \Longrightarrow X_t - X_{t-1} = \Phi(X_{t-4} - X_{t-5}) + Z_t$$

Dependent Variable: I Method: Least Squar Date: 06/21/08 Time Sample (adjusted): 19 Included observations	es : 18:23 :84Q1 1992Q3			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.302565	6.017135	0.050284	0.9602
DIF_MARINE(4)	0.910204	0.068338	13.31915	0.0000
R-squared	0.843156	Mean depen	ident var	4.788571
Adjusted R-squared	0.838403	S.D. depend	lent var	88.41493
S.E. of regression	35.54204	Akaike info	criterion	10.03475
Sum squared resid	41686.80	Schwarz crit	terion	10.12363
Log likelihood	-173.6082	F-statistic		177.3999
Durbin-Watson stat	2.620756	Prob(F-stati:	stic)	0.000000

Residual checks: Errors should be uncorrelated

					(Correlogram of Residuals			
ate: 06/21/08 Time: 18:23 ample: 1984Q1 1992Q3 cluded observations: 35									
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
		8 -0.314	0.104 0.136 0.138 0.079 -0.132 -0.130 -0.409 -0.282 0.033 -0.049 -0.093 0.021	5.8696 5.9116 6.3617 11.086 12.196 19.444 20.312 23.363 23.516 23.633	0.065 0.139 0.209 0.315 0.384 0.498 0.197 0.202 0.035 0.041 0.025 0.036				
		16 0.001	-0.119	23.638	0.098				

Correlogram of Residuals Squared

Date: 06/21/08 Time: 18:04 Sample: 1984Q1 1992Q3 Included observations: 35 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
ı (Li	I (I	1 -0.032	-0.032	0.0393	24
		2 -0.123	-0.124	0.6283	0.428
· 🗖		3 0.368	0.366	6.1233	0.047
I 🗖 I		4 -0.174	-0.211	7.3914	0.060
1 ()	1 1 1 1	5 -0.047	0.068	7.4884	0.112
I 🛛 I		6 -0.050	-0.291	7.5981	0.180
· 🛛 ·	I [] I	7 -0.110	0.094	8.1558	0.227
1 1		8 -0.005	-0.146	8.1570	0.319
י 🗖 י	. [].	9 -0.192	-0.063	9.9977	0.265
יםי	1 1 1 1	10 0.059	0.037	10.180	0.336
· [·	十二月 月	11 -0.034	-0.111	10.241	0.420
· 🛛 ·	יוןי	12 -0.109	0.049	10.915	0.450
· 🗖 ·	I I I	13 0.265	0.136	15.049	0.239
· 🛛 ·	'□''	14 -0.111	-0.120	15.808	0.260
· 🛛 ·		15 -0.089		16.323	0.294
· 🔲		16 0.304	0.131	22.608	0.093

Heteroskedasticity refers to non-constant variance. Based on the correlogram of the residuals and squared residuals, we can conclude that there exists no serial correlation on the residual squares. Therefore, the series is homoscedastic.

Forecasting:

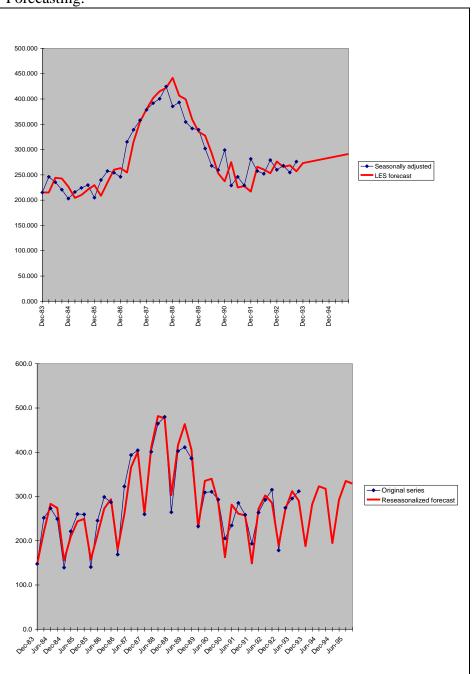


Figure 7.5. Forecast values based on classical approach (above) and the multiplicative approach (below)

Exercises:

- 1. For the multiplicative seasonal ARIMA(1,2,1) $x(2,1,2)_6$ write the model in original form.
- 2. Express ARIMA $(0,1,0)x(1,1,1)_3$ in equation form.
- 3. Express ARIMA $(1,1,0)x(1,1,1)_3$ in equation form.

Chapter 8 ARCH(m) (Autoregressive Conditional Heteroskedasticity) Models

Stationary and nonstationary processes presented till now are assumed to have constant variance (homoskedasticity)-unconditional variance. However, some series exhibit periods of unusually large volatility resulting in non-constant variance. The volatility in the series is modeled by taking into account the conditional variance.

Consider the return or relative gain of a stock at time t is

$$X_t = \frac{Y_t - Y_{t-1}}{Y_{t-1}}$$
 where Y_t is the price of the stock at time t.

From here, one can write, $Y_t = (1 + X_t)Y_{t-1}$. Taking the logarithm of both sides and first difference yields

$$\ln(Y_t) = \ln(1 + X_t) + \ln(Y_{t-1})$$

 $\nabla \ln Y_t = \ln(Y_t) - \ln(Y_{t-1}) = \ln(1 + X_t) + \ln(Y_{t-1}) - \ln(Y_{t-1})$ $\nabla \ln Y_t = \ln(1 + X_t)$

If the percent change, X_t , stays relatively small in magnitude, then

 $\ln(1+X_t) \approx p_t$ and $\nabla \ln Y_t \approx p_t$. Therefore, the highly volatile periods tend to be clustered together.

ARCH(1)

Let $X_t = \sigma_t Z_t$ and

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

where $Z_t \sim \text{Gaussian WN}(0,1)$

The conditional distribution of X_t given X_{t-1} is $X_t | X_{t-1} \sim N(0, \alpha_0 + \alpha_1 X_{t-1}^2)$

Representation of ARCH(1) as AR(1) $X_{t}^{2} = \sigma_{t}^{2} Z_{t}^{2}$ $\frac{-(\alpha_{0} + \alpha_{1} X_{t-1}^{2} = \sigma_{t}^{2})}{X_{t}^{2} = \alpha_{0} + \alpha_{1} X_{t-1}^{2} + \upsilon_{t}}, \text{ where } \upsilon_{t} = \sigma_{t}^{2} (Z_{t}^{2} - 1) \text{ and } Z_{t}^{2} \sim Chi - square(1)$ The Properties of ARCH process are: Let the series contain $X_t = X_t, X_{t-1}, \dots$

1.
$$E X_{t} = E \sigma_{t}Z_{t} = E \sigma_{t} E Z_{t} = 0$$

2. $Var X_{t} = [X_{t}^{2}] = E[\sigma_{t}^{2}Z_{t}^{2}] = E[\sigma_{t}^{2}]E[Z_{t}^{2}] = E[\sigma_{t}^{2}]$
 $\sigma^{2} = Var X_{t} = E[\sigma_{t}^{2}] = \alpha_{0} + \alpha_{1}E[X_{t-1}^{2}]$
 $\sigma^{2} = \alpha_{0} + \alpha_{1}\sigma^{2} \Rightarrow \sigma^{2} - \alpha_{1}\sigma^{2} = \alpha_{0} \Rightarrow \sigma^{2} = \frac{\alpha_{0}}{1 - \alpha_{1}}$
3. $\gamma X_{t+h}, X_{t} = E X_{t+h}X_{t} = E[E[X_{t}X_{t+h}|X_{t+h-1}]]$
 $\gamma X_{t+h}, X_{t} = E[X_{t}E[X_{t+h}|X_{t+h-1}]] = 0$

4. If $\alpha_1 < 1$, the process is White Noise and its unconditional distribution is symmetrical around zero (leptokurtic distribution: see below)

5. If $3\alpha_1^2 < 1$ in addition to property 4, X_t^2 is a causal AR(1) process with

$$\rho(h) = \alpha_1^h, \quad h > 0$$

6. If $3\alpha_1 \ge 1$, in addition to property 5, then X_t^2 is strictly stationary with infinite variance.

GARCH(m,r)

_

Generalized ARCH model with order m,r is

$$X_{t} = \sigma_{t} Z_{t}$$

$$\sigma_{t}^{2} = \alpha_{0} + \sum_{j=1}^{m} \alpha_{j} X_{t-j}^{2} + \sum_{j=1}^{r} \beta_{j} \sigma_{t-j}^{2}$$
GARCH(1,1) is
$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} X_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}; \quad \alpha_{1} + \beta_{1} < 1$$
The process can be expressed as ARMA(1,1)
$$X_{t}^{2} = \alpha_{0} + (\alpha_{1} + \beta_{1}) X_{t-1}^{2} + \sigma_{t}^{2} (Z_{t}^{2} - 1) - \beta_{1} (Z_{t}^{2} - 1)$$

$$X_{t}^{2} - \sigma_{t}^{2} = \sigma_{t}^{2} (Z_{t}^{2} - 1)$$

$$-\beta_{1} (X_{t-1}^{2} - \sigma_{t-1}^{2}) = \beta_{1} \sigma_{t-1}^{2} (Z_{t-1}^{2} - 1)$$

$$\sigma_{t}^{2} - \beta_{1} \sigma_{t-1}^{2} = \alpha_{0} + \alpha_{1} X_{t-1}^{2}$$

Contribution of descriptive statistics on Model determination:

The skewness and the kurtosis of a distribution are

$$S(y) = E\left[\frac{(y - \mu_y)^3}{\sigma_y^3}\right], K(y) = E\left[\frac{(y - \mu_y)^4}{\sigma_y^4}\right]$$

respectively. If the distribution is normal, K(y)=3, S(y)=0. Thereofre, for any distribution, K(y) - 3 is called the excess kurtosis.

Under normality assumption, $\, \widehat{s}(y) \,$ and $\, \hat{k}(y) \,$ are distributed asymptotically as normal with

zero mean and variances 6/T and 24/T, respectively.

Financial data often exhibit leptokurtosis, i.e. a kurtosis higher than 3 or an excess kurtosis higher than 0. We consider such return pattern especially for high frequency data, for example daily data. For monthly, quarterly or yearly aggregated data the distribution turns more towards a normal distribution.

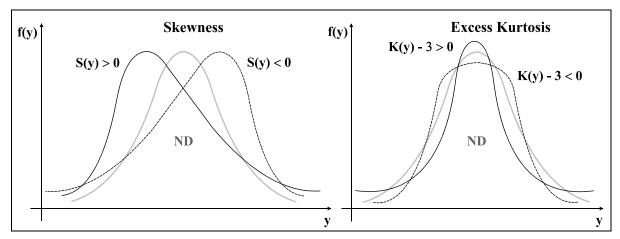


Figure 8.1. The forms of Skewness and Kurtosis for different values

b) Test of Normality

Additional to Q-Q plot and goodness of fit tests Jarque-Bera test statistic measures the difference of the skewness and kurtosis of the series with those from the normal distribution. The statistic is computed as:

$$JB = \left(\frac{T}{6}\right) \cdot \left(\hat{s}^2 + \frac{1}{4}\left(\hat{k} - 3\right)^2\right) \sim \chi^2(2)$$

Under the null hypothesis of a normal distribution, the Jarque-Bera statistic is distributed as χ^2 with 2 degrees of freedom. [H₀: The distribution is Normal]

 $1\% \approx 9,21$; $5\% \approx 5,99$. The test is only adequate for large samples, whereas for small samples you have to interpret it cautiously.

Example 1: Dax TR returns between 1965-2003 (source R.Fuess)

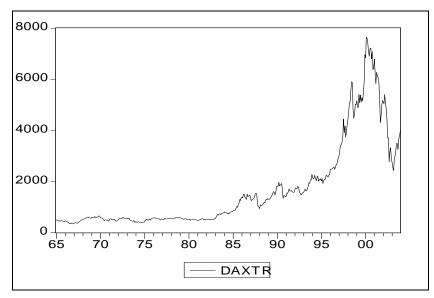


Figure 8.2. Original series

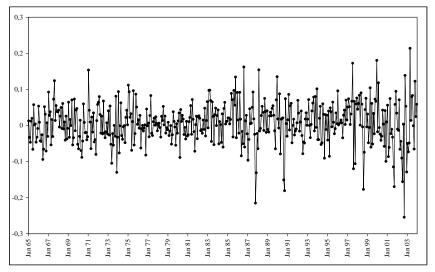


Figure 8.3. Differenced series

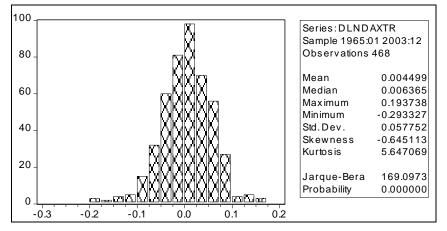
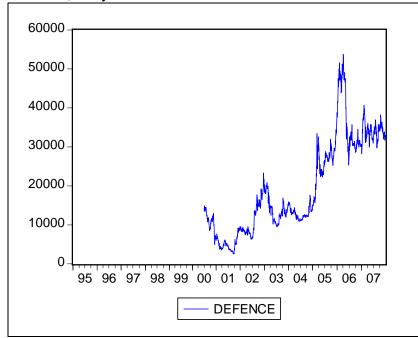



Figure 8.4. Histogram of the differenced series, Normality test and descriptive statistics

Example 2: The series contain observations from Istanbul Stock Exchange (National Defence) daily from 07/03/2000 to 31/12/2007.

Figure 8.5. The plot of the original series

							Correlogram	of DEFEN	CE
ate: 06/22/08 Tim ample: 1/02/1995 1 cluded observation	12/31/2007								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			
		2 4 4 4 4 4 4 4 4 4	0.994 0.992 0.989 0.987 0.985 0.983 0.983 0.981 0.979 0.976 0.974 0.971 0.969 0.966 0.963	0.998 -0.014 -0.07 0.014 -0.034 -0.021 -0.020 -0.013 -0.069 -0.002 -0.021 -0.002 -0.021 -0.022 -0.021 -0.052 0.014 0.012 0.001 0.017	1869.1 3731.1 5586.2 7434.5 9275.6 11110. 12937. 14756. 16569. 18375. 20173. 21963. 23745. 25518. 27283. 29038. 30785. 32523. 34252. 35972.	0.000 0.000			

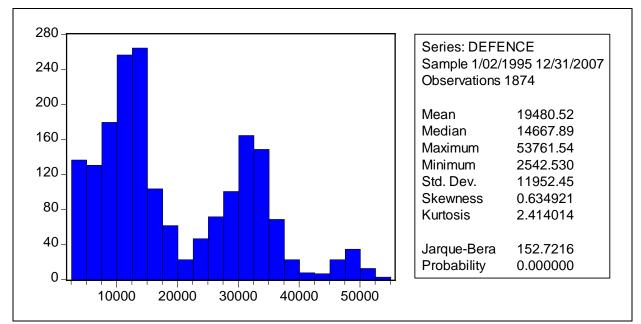


Figure 8.6 The histogram and Normality check for the original data. (skewed to right)

			Augment	ed Dickey-Fuller Unit Root Test on DEFENC
Exogenous: Constant	ENCE has a unit root t natic based on SIC, M/			
C		t-Statistic	Prob.*	
Augmented Dickey-F	uller test statistic	-1.056476	0.7347	
Test critical values:	1% level	-3.433640		
	5% level	-2.862880		
		-2.567530		

Test the stationarity of differenced data by using ADF Test :

			Augmented Dickey-Fuller Unit F	Root Test on D(DEFENCE)
Exogenous: Constant	EFENCE) has a unit roo atic based on SIC, MA>			
		t-Statistic	Prob.*	
Augmented Dickey-F	uller test statistic	-42.67318	0.0000	
Test critical values:	1% level	-3.433642		
	5% level	-2.862881		
	10% level	-2.567531		

The series becomes stationary after differencing with order 1.

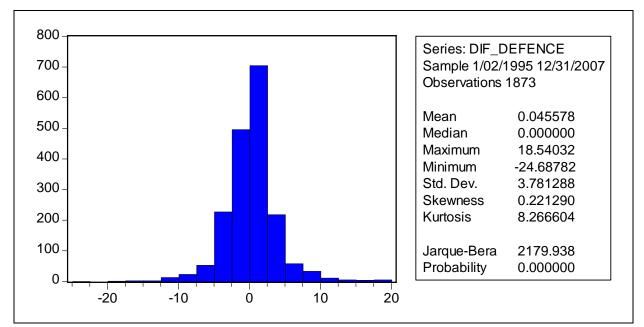


Figure 8.7. The histogram of the difference data show high kurtosis and is symmetric. Normality test is done (Jarque-Bera)

A .1	T7 . •	•	1 * 1		•	•	C	ADOIL	CC .
Acthe	K urtosi	C 1C	high	thig	18 2	s10n	tor		ettects
no une	Kurtosi	3 13	mgn,	uns	15 a	SIGH	101	men	CITCUIS

						Co	rrelogram of DIF_	DEFENCE
ate: 06/21/08 Tin ample: 1/02/1995 cluded observation	12/31/2007							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
	1 1	1	0.024	0.024	1.0900	0.296		
Í	l (3	0.004	0.004	1.2851	0.733		
1		45	0.005 -0.007	0.004	1.3273 1.4325	0.857 0.921		
i)i in	1) 10	6	0.009	0.009		0.955		
<u>þ</u>	l 🧕	8	0.033	0.031	7.3664	0.498		
i)	1	10	-0.003 0.056	0.055	13.270	0.598 0.209		
01 11			-0.054		18.674	0.067		
di di	1 1	13	-0.015	-0.015	19.161 20.091	0.118		
ų		15	0.014	0.012	20.460	0.155		
1) 1		16	0.023 0.007	0.020	21.485	0.161		
n n		18 19	0.000	0.000	21.570 23.454	0.252		
i)i		20				0.216		

The correlogram of the differenced data shows that the returns are not correlated.

Correlogram of SQUARED_DIF_DEFENCE

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı 🗖 i		1	0.273	0.273	139.46	0.000
		2	0.205	0.141	218.19	0.000
		3	0.186	0.110	283.05	0.000
- P	<u>ф</u>	4	0.112	0.020	306.82	0.000
i p		5	0.172	0.111	362.32	0.000
i 🗖	l ip	6	0.135	0.045	396.66	0.000
ı 🗖	<u>ф</u>	7	0.101	0.016	415.91	0.000
ų į	() ()	8	0.111	0.035	439.05	0.000
ı)	() ()	9	0.047	-0.029	443.13	0.000
		10	0.171	0.135	498.38	0.000
	l ip	11	0.134	0.042	532.39	0.000
ı p	l di	12	0.069	-0.023	541.47	0.000
ı)	((13	0.046	-0.039	545.43	0.000
ų.	((14	0.014	-0.028	545.80	0.000
ų l	l u	15	0.073	0.044	555.91	0.000
ılı 🖉	1	16	0.060	0.004	562.63	0.000
1)	1	17	0.037	-0.007	565.20	0.000
ı p	() ()	18	0.070	0.032	574.55	0.000
- D	ի ի	19	0.074	0.053	584.82	0.000
i)	փ	20	0.075	0.019	595.46	0.000
. In	I di	1.04	0.000	0.005	000 70	0 000

However, the squared returns are correlated. Here, the Coefficient for AR and MA terms are not significant. Therefore, we regress differenced data on constant and the variance.

Dependent Variable: I Method: ML - ARCH (Date: 06/21/08 Time Sample (adjusted): 7/ Included observations Convergence achieved Variance backcast: C GARCH = C(2) + C(3)	(Marquardt) - 1 :: 19:24 04/2000 12/31 : 1873 after ao d after 39 itera NN	Vormal distrib /2007 djustments tions		
	Coefficient	Std. Error	z-Statistic	Prob.
С	0.005147	0.073982	0.069572	0.9445
	Variance	Equation		
C RESID(-1)^2 GARCH(-1)	0.508804 0.098621 0.866373	0.049227 0.009294 0.009847	10.33582 10.61168 87.98028	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000114 -0.001720 3.784538 26769.18 -4936.067	Mean deper S.D. depend Akaike info Schwarz cri Durbin-Wats	dent var criterion terion	0.045578 3.781288 5.275032 5.286853 1.951180

The Model is $\sigma_t^2 = 0.508 + 0.0986 X_{t-1}^2 + 0.866 \sigma_{t-1}^2$

Residual Checks:

				C.	orreloa	tram of S	tandardiza	ed Residua	s
Date: 06/21/08 Time: Sample: 7/04/2000 12 ncluded observations:	2/31/2007							cu residuu	3
Autocorrelation	Partial Correlation	AC	PAC Q-	Stat F	Prob				
	***********	3 0.009 4 0.019 5 0.020 6 0.007 7 -0.014 - 8 0.039	0.035 3.1 0.007 3.2 0.018 4.0 0.018 4.1 0.005 4.8 0.016 5.1 0.038 7.9 0.015 8.9 0.015 8.9 0.026 15 0.014 15 0.012 16 0.020 17 0.014 17 0.019 18 0.002 18 0.002 18 0.002 18 0.002 18	1968 0 3346 0 0136 0 7422 0 3381 0 1919 0 9917 0 5174 0 .673 0 .673 0 .110 0 .357 0 .357 0 .171 0 .457 0 .457 0).202).343).404).448).565).637).434).434).434).142).154).243).243).243).243).243).243).243).245).314				
			C	orrelogr	am of S	Standard	ized Resid	uals Square	ed
Date: 06/21/08 Time: Sample: 7/04/2000 12/ Included observations:	31/2007								
Autocorrelation F	Partial Correlation	AC PA	AC Q-Sta	it Prol	b				
	11 11 11 11 11 11 11 11 11 11 11 11 11	1 0.009 0.0 2 -0.011 -0.0 3 0.001 0.0 4 -0.011 -0.0 5 0.020 0.0 6 -0.008 -0.0 7 -0.005 -0.0 9 -0.020 -0.0 0 0.076 0.0 1 0.009 0.0 2 0.004 0.0 3 0.005 -0.0	011 0.380 001 0.381 011 0.617 020 1.370 0309 1.495 005 1.552 005 1.552 005 1.593 020 2.383 020 1.322 027 13.37 005 1.340	3 0.82 2 0.94 3 0.96 3 0.96 3 0.96 9 0.96 9 0.96 9 0.96 9 0.96 9 0.96 90 0.21 16 0.26 10 0.344 7 0.40	27 44 51 27 50 30 31 34 12 59 41 39				

Both correlogram show that residuals and squared residuals are white noise. This seads us to conclude that there exists NO ARCH effects left.

Chapter 9 Vector Autoregressive Analysis

9.1. Vector autoregression (VAR) is an econometric model used to capture the evolution and the interdependencies between multiple time series, generalizing the univariate AR models. All the variables in a VAR are treated symmetrically by including for each variable an equation explaining its evolution based on its own lags and the lags of all the other variables in the model. A VAR model describes the evolution of a set of *k* variables measured over the same sample period ($t \in T$) as a linear function of only their past evolution. The variables are collected in a $k \times l$ vector y_l , which has as the ith element $y_{i,l}$, the time *t* observation of variable y_i .

For example, if the ith variable is GDP, then $y_{i,t}$ is the value of GDP at t. <u>A (reduced) p-th order VAR</u>, VAR(p), is

$$y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + \varepsilon_t$$

where *c* is a $k \times l$ vector of constants (**intercept**), A_i is a $k \times k$ matrix (for every i = 1, ..., p) and ε_t is a $k \times l$ vector of error terms satisfying the conditions

1. $E[\varepsilon_t] = 0$. that is, every error term has mean zero;

The structural, economic shocks which drive the dynamics of the economic variables are assumed to be independent, which implies zero correlation between error terms as a desired property. This is helpful for separating out the effects of economically unrelated influences in the VAR.

For instance, there is no reason why an oil price shock (as an example of a supply shock) should be related to a shift in consumers' preferences towards a style of clothing (as an example of a demand shock); therefore one would expect these factors to be statistically independent.

2. $E[\varepsilon_t \varepsilon'_t] = \Omega$ the contemporaneous covariance matrix of errors;

($n \ x \ n$ positive definite matrix); This is a desirable feature especially when using low frequency data. For example, an indirect tax rate increase would not affect tax revenues the day the decision is announced, but one could find an effect in that quarter's data.

3. $E[\varepsilon_t \varepsilon'_{t-k}] = 0$ for any k>0; there is no correlation across time;

no serial correlation in individual error terms.

For order p the set of equations becomes

$$\begin{bmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \\ \vdots \\ y_{kt} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_k \end{bmatrix} + \begin{bmatrix} a_{1,1}^1 & \dots & a_{1,k}^1 \\ \dots & \dots & \dots \\ a_{1,1}^1 & \dots & a_{1,k}^1 \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \\ \vdots \\ y_{k,t-1} \end{bmatrix} + \begin{bmatrix} a_{1,1}^2 & \dots & a_{1,k}^2 \\ \dots & \dots & \dots \\ a_{1,1}^2 & \dots & a_{1,k}^2 \end{bmatrix} \begin{bmatrix} y_{1,t-2} \\ y_{2,t-2} \\ y_{2,t-2} \\ \vdots \\ y_{k,t-2} \end{bmatrix} + \dots + \begin{bmatrix} a_{1,1}^p & \dots & a_{1,k}^p \\ \dots & \dots & \dots \\ a_{1,1}^p & \dots & a_{1,k}^p \end{bmatrix} \begin{bmatrix} y_{1,t-p} \\ y_{2,t-p} \\ y_{3,t-p} \\ \vdots \\ y_{k,t-p} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \\ \vdots \\ \varepsilon_{kt} \end{bmatrix}$$

The *l*-periods back observation y_{t-l} is called the *l*-th *lag* of *y*. Thus, a p-th order VAR is also called a *VAR with p lags*

Order of integration of the variables

Note that all the variables used have to be of the same order of integration. We have the following cases:

- All the variables are I(0) (stationary):
 - one is in the standard case, ie. a VAR in level
- All the variables are I(d) (non-stationary) with d>1:
 - The variables are cointegrated:

the error correction term has to be included in the VAR. The model becomes a Vector error correction model (VECM) which can be seen as a restricted VAR.

• The variables are not cointegrated:

the variables have first to be differenced d times and one has a VAR in difference

Example: VAR(1)

Suppose $\{y_{1t}\}_{t\in T}$ denote real GDP growth, $\{y_{2t}\}_{t\in T}$ denote inflation

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}$$

$$y_{1t} = c_1 + A_{11}y_{1,t-1} + A_{12}y_{2,t-1} + \varepsilon_{1t}$$

$$y_{2t} = c_2 + A_{21}y_{1,t-1} + A_{22}y_{2,t-1} + \varepsilon_{2t}$$

- One equation for each variable in the model.
- The current (time *t*) observation of each variable depends on its own lags as well as on the lags of each other variable in the VAR.

Expressing VAR(p) as VAR(1)

The transformation amounts to merely stacking the lags of the VAR(p) variable in the new VAR(1) dependent variable and appending identities to complete the number of equations.

Example: VAR(2) model

 $y_t = c + A_1y_{t-1} + A_2y_{t-2} + e_t$ can be recast as the *VAR(1)* model

$$\begin{bmatrix} y_t \\ y_{t-1} \end{bmatrix} = \begin{bmatrix} c \\ 0 \end{bmatrix} + \begin{bmatrix} A_1 & A_2 \\ I & 0 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ y_{t-2} \end{bmatrix} + \begin{bmatrix} \varepsilon_t \\ 0 \end{bmatrix}$$
 where *I* is the identity matrix.

The equivalent VAR(1) form is more convenient for analytical derivations and allows more compact statements.

Structural VAR (SVAR) with p lags

 $B_0 y_t = c_0 + B_1 y_{t-1} + B_2 y_{t-2} + \dots + B_p y_{t-p} + e_t$

where c_0 is a $k \times l$ vector of constants, B_i is a $k \times k$ matrix, i = 0, ..., p, and e_t is a $k \times l$ vector of error terms.

The main diagonal terms of the B_0 matrix (the coefficients on the i^{th} variable in the i^{th} equation) are scaled to 1.

The error terms e_t (*structural shocks*) satisfy the conditions and particularity that all the elements off the main diagonal of the covariance matrix $E(e_t e_t') = \Sigma$ are zero. That is, the structural shocks are uncorrelated.

Example: Two variable structural VAR(1) is:

$$\begin{bmatrix} 1 & b_{01} \\ b_{02} & 1 \end{bmatrix} \begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} c_{01} \\ c_{02} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} e_{1t} \\ e_{2t} \end{bmatrix}$$

where $\operatorname{Var}(\mathbf{e}_{i}) = \sigma_{i}^{2}$, i=1,2; $\operatorname{cov}(\mathbf{e}_{1},\mathbf{e}_{2}) = 0$.

Reduced VAR

By premultiplying the structural VAR with the inverse of B_0

$$y_{t} = B_{0}^{-1}c_{0} + B_{0}^{-1}B_{1}y_{t-1} + B_{0}^{-1}B_{2}y_{t-2} + \dots + B_{0}^{-1}B_{p}y_{t-p} + B_{0}^{-1}e_{t}$$

and denoting

$$B_0^{-1}c_0 = c; B_0^{-1}B_i = A_i, i=1,..,p; B_0^{-1}e_t = \varepsilon_t$$

one obtains the *p-th order reduced VAR*

$$y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + \varepsilon_t$$

Note that in the reduced form all right hand side variables are predetermined at time t. As there are no time t endogenous variables on the right hand side, no variable has a *direct* contemporaneous effect on other variables in the model.

However, the error terms in the reduced VAR are composites of the structural shocks $\varepsilon_t = B_0^{-1} e_t$.

Thus, the occurrence of one structural shock $e_{i,t}$ can potentially lead to the occurrence of shocks in all error terms $\varepsilon_{j,t}$, thus creating contemporaneous movement in all endogenous variables.

Consequently, the covariance matrix of the reduced VAR

$$\Omega = E[\varepsilon_t \varepsilon_t'] = E[B_0^{-1} e_t e_t' (B_0^{-1})'] = B_0^{-1} \Sigma(B_0^{-1})'$$

can have non-zero off-diagonal elements, thus allowing non-zero correlation between error terms.

10.2. Impulse Response Function

The key tool to trace short run effects with an SVAR is the impulse response function.

$$y_{t} = c + A_{1}y_{t-1} + A_{2}y_{t-2} + \dots + A_{p}y_{t-p} + \varepsilon_{t} \quad \text{can be expressed as MA}(\infty)$$
$$y_{t} = c + \varepsilon_{t} + \psi_{1}\varepsilon_{t-1} + \psi_{2}\varepsilon_{t-2} + \dots = \Psi(B)\varepsilon_{t}$$

The matrix ψ_l has the interpretation $\frac{\partial y_{t+l}}{\partial \varepsilon_t} = \psi_l$

i.e. the row i, column j element of ψ_l identifies the consequences of a one-unit increase in the jth variable's innovation at date t (ε_{tj}) for the value of the ith variable at time t+*l*, holding all other innovations at all dates constant.

A plot of the row i, column j element of ψ_l as a function of lag l is called the

non-orthogonalized impulse response function. It describes the response of $y_{i,t+l}$ to a

one-time impulse in y_{it} with all other variables dated t or earlier held constant.

Checking for the lag length

The model should represent the observed processes as precise as possible along with attaining error terms to be at minimum. Therefore, the choice of the number of variables to be included into the model is important.

If the lag length is chosen to be too short, serial correlation among error terms become significant.

A test on the two possible choice of the order

 H_0 : the model needs p+1 lags

(the coefficients of $y_{1,t-p}, y_{2,t-p}, ..., y_{k,t-p}$ are all zero)

 H_a : the model needs p lags

Test statistic: Log Likelihood test

$$\lambda = \frac{Likelihood (restricted model)}{Likelihood (unrestricted model)} \sim Chi - square$$

The test is performed to check if choosing the lag p+1 lags improves the power of the test or not.

Other measure for comparison is the Squared Residuals $\ln(\frac{\hat{\varepsilon}'\varepsilon}{T})$

Compared for both models based on the statistics: Akaike Information Criterion, Schwarz information Criterion.

Example: Let following log transformed variables denote $\{y_{1t}\}_{t\in T}$ consumer price index, $\{y_{2t}\}_{t\in T}$ GDP; $\{y_{2t}\}_{t\in T}$ Money stock M1 $\{y_{2t}\}_{t\in T}$ quarterly average of 3-month interest rate VAR representation: $y_{1t} = c_1 + a_{1,1}^1 y_{1,t-1} + ... + a_{1,k}^1 y_{k,t-1} + a_{1,1}^2 y_{1,t-2} + ... + a_{1,k}^2 y_{2,t-2} + a_{1,1}^p y_{3,t-p} + ... + a_{1,k}^p y_{3,t-p} + a_{1,1}^p y_{4,t-p} + ... + a_{1,k}^p y_{4,t-p} + \varepsilon_{1t}$ $y_{2t} = c_2 + a_{2,1}^1 y_{1,t-1} + ... + a_{1,k}^1 y_{k,t-1} + a_{2,1}^2 y_{2,t-2} + ... + a_{2,k}^2 y_{2,t-2} + a_{2,1}^p y_{3,t-p} + ... + a_{2,k}^p y_{3,t-p} + a_{2,k}^p y_{4,t-p} + ... + a_{2,1}^p y_{4,t-p} + \varepsilon_{2t}$ $y_{3t} = c_2 + a_{3,1}^1 y_{1,t-1} + ... + a_{3,k}^1 y_{k,t-1} + a_{3,1}^2 y_{2,t-2} + ... + a_{3,k}^2 y_{2,t-2} + a_{3,1}^p y_{3,t-p} + ... + a_{3,k}^p y_{4,t-p} + ... + a_{3,1}^p y_{4,t-p} + \varepsilon_{3t}$ $y_{4t} = c_2 + a_{4,1}^1 y_{1,t-1} + ... + a_{4,k}^1 y_{k,t-1} + a_{4,1}^2 y_{2,t-2} + ... + a_{4,k}^2 y_{2,t-2} + a_{4,1}^p y_{3,t-p} + ... + a_{4,k}^p y_{3,t-p} + a_{4,k}^p y_{4,t-p} + ... + a_{4,1}^p y_{4,t-p} + \varepsilon_{4t}$

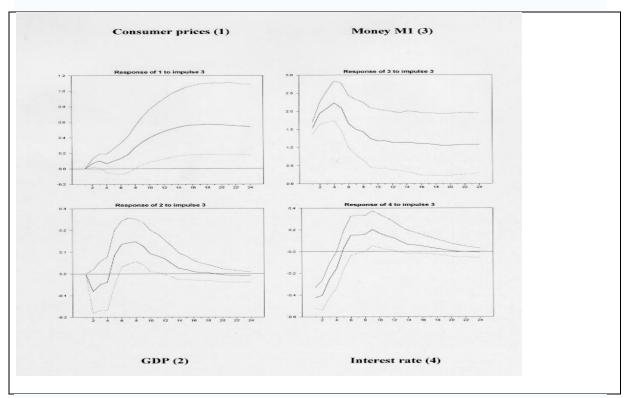


Figure 9.1 Impulse response plots of the variable above

Example: Given

$$y_{t} = -0.2z_{t} + 0.6y_{t-1} + 0.4z_{t-1} + \varepsilon_{yt}$$

$$z_{t} = 0.2y_{t-1} + 0.3z_{t-1} + \varepsilon_{zt}$$
One unit shock in epsilon y
One unit shock in epsilon y
One unit shock in epsilon z
(y) sequence
(y)

Figure 9.2 Impulse response functions of the example given

Example: Given

 $y_{t} = 0.6y_{t-1} + 0.4z_{t-1} + \varepsilon_{yt}$ $z_{t} = 0.2y_{t} + 0.2y_{t-1} + 0.3z_{t-1} + \varepsilon_{zt}$

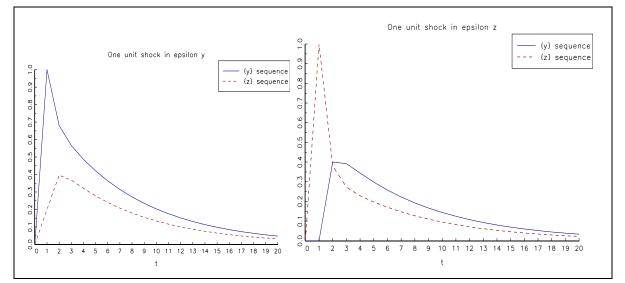
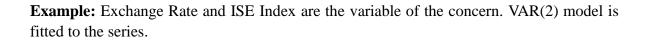



Figure 9.3 Impulse response function of the system of equations above

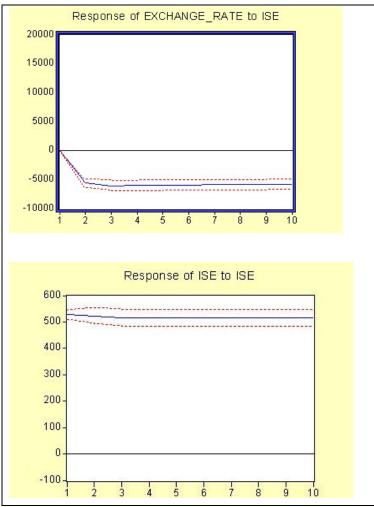


Figure 9.3 Impulse response functions of the selected variables

Vector Autoregression E Date: 07/20/08 Time: Sample (adjusted): 1/04/ Included observations: 1 Standard errors in () & t	: 10:59 /2001 12/31/2007 748 after adjustments	
	EXCHANGE_RATE	ISE
EXCHANGE_RATE(-1)	1.082797	0.001270
	(0.02245)	(0.00077)
	[48.2217]	[1.65550]
EXCHANGE_RATE(-2)	-0.092452	-0.001190
	(0.02232)	(0.00076)
	[-4.14189]	[-1.56054]
ISE(-1)	-10.63907	0.993499
	(0.70086)	(0.02394)
	[-15.1799]	[41.4932]
ISE(-2)	10.57968	0.007108
	(0.70180)	(0.02398)
	[15.0751]	[0.29645]
С	15468.75	-100.0376
	(3309.16)	(113.051)
	[4.67452]	[-0.88489]
R-squared	0.991659	0.998669
Adj. R-squared	0.991640	0.998666
Sum sq. resids	4.15E+11	4.84E+08
S.E. equation	15431.88	527.1996
F-statistic	51808.14	326895.9
Log likelihood	-19335.85	-13433.53
Akaike AIC	22.12911	15.37589
Schwarz SC	22.14475	15.39153
Mean dependent	1396230.	24460.15
S.D. dependent	168779.6	14432.87

10.3. Granger causality test

Technique for determining whether one time series is useful in forecasting another.

 $X_{t_{t}}$ is said to Granger-cause $Y_{t_{t}}$ if it can be shown, usually through a series of

F-tests on lagged values of *X* (and with lagged values of *Y* also known), **that those** *X* **values provide statistically significant** information about future values of *Y*.

The Granger test can be applied only to pairs of variables, and may produce misleading results when the true relationship involves three or more variables.

Example: Let $Y_{1_{t}}$ denote GDP, $Y_{2_{t}}$ denote consumption

 H_0 : the coefficients of $y_{1,t-p}, y_{2,t-p}, ..., y_{k,t-p}$ are all zero (equivalent of saying y_2 does

not Granger-cause y_1)

Pairwise Granger Causality test			
Sample: 1946:1 1995:4			
Lags: 4	Obs		
Null Hypothesis	189	F-Statistic	Probability
GDP doesnot Granger Cause Cons.		1.39156	0.23866
Cons. does not Granger cause GDP		7.11192	2.4E-05

Consumption Granger Cause on GDP.

Example:

Pairwise Granger Causality Tests Date: 07/20/08 Time: 10:40 Sample: 1/02/2001 12/31/2007 Lags: 5			
Null Hypothesis:	Obs	F-Statistic	Probability
INTEREST_RATE does not Granger Cause EXCHANGE_RATE EXCHANGE_RATE does not Granger	1745	28.3482	1.1E-27
INTEREST_RATE		32.1459	2.0E-31
ISE does not Granger Cause EXCHANGE_RATE EXCHANGE_RATE does not Granger Cau	1745	58.2545 2.31559	3.6E-56 0.04151
GLOBAL does not Granger Cause EXCHANGE_RATE EXCHANGE_RATE does not Granger GLOBAL	1745	21.4690 1.16105	6.7E-21 0.32611
		1.10103	0.32011
ISE does not Granger Cause INTEREST_RATE INTEREST_RATE does not Granger Cause	1745	12.2991 0.10286	9.7E-12 0.99158
GLOBAL does not Granger Cause INTEREST_RATE INTEREST_RATE does not Granger	1745 Cause	2.98831	0.01084
GLOBAL	Cuube	1.48645	0.19105
GLOBAL does not Granger Cause ISE ISE does not Granger Cause GLOBAL	1745	20.7727 1.91422	3.3E-20 0.08894

9.4 Cointegration

If two or more series are themselves non-stationary, but a linear combination of them is stationary, then the series are said to be cointegrated.

Example:

A stock market index and the price of its associated follow a random walk by time. Testing the hypothesis that there is a statistically significant connection between the futures price and the spot price could now be done by testing for a cointegrating vector.

Example: $Y_{1t} = Real \text{ GDP}$; $Y_{2t} = Private investment (real)$

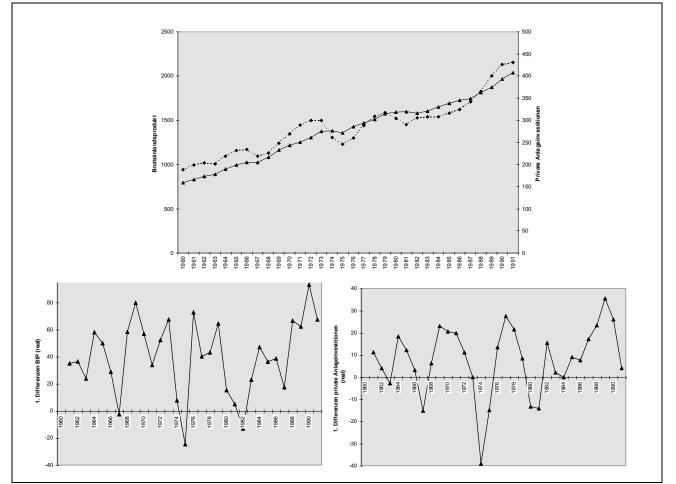


Figure 9.4. The graphs of original series and the plots of differenced series of two variables

The usual procedure for testing hypotheses concerning the relationship between non-stationary variables was to run Ordinary Least Squares (OLS) regressions on data which had initially been differenced.

Although this method is correct in large samples, cointegration provides more powerful tools when the data sets are of limited length, as most economic time-series are.

The two main methods for testing for cointegration are:

- 1. The Engle-Granger three-step method.
- 2. The Johansen procedure.

In practise, cointegration is used for such series in typical econometric tests, but it is more generally applicable and can be used for variables integrated of higher order (to detect correlated accelerations or other second-difference effects).

Multicointegration extends the cointegration technique beyond two variables, and occasionally to variables integrated at different orders.

However, these tests for cointegration assume that the cointegrating vector is constant during the period of study. In reality, it is possible that the long-run relationship between the underlying variables change (shifts in the cointegrating vector can occur). The reason for this might be technological progress, economic crises, changes in the people's preferences and behaviour accordingly, policy or regime alteration, and organizational or institutional developments. This is especially likely to be the case if the sample period is long. To take this issue into account Gregory and Hansen (1996) have introduced tests for cointegration with one unknown structural break and Hatemi-J (2007) has introduced tests for cointegration with two unknown breaks.

Example: $Y_{t \to t}$ income; $X_{t \to t}$ consumption. Suppose both series are I(1).

Let $Y_t = Y_{t-1} + \varepsilon_{Y_t}$ random walk having $Var[Y]_t = t\sigma_{\varepsilon_Y}^2$

But in the long run, $X_t - cY \approx 0$ where c is the propensity to consume

$$X_t = cY_t + \varepsilon_t$$

Consider a series of k models

 $y_{1t} = y_{1t-1} + \varepsilon_{1t}$ $y_{2t} = y_{2t-1} + \varepsilon_{2t} \implies y_{1t}, y_{2t}, ..., y_{kt}$ \vdots

 $\mathbf{y}_{kt} = \mathbf{y}_{kt-1} + \boldsymbol{\varepsilon}_{kt}$

is cointegrated if each series

- a. nonstationary (integrated of order one)
- b. there exists (at least one) linear combination $a'y_t$ a stationary process

<u>If cointegration factor is known</u>, then the test of cointegration is reduced to a unit root test If we can reject the null hypothesis of non-stationarity of linear, then this leads us to conclude as a combination of I(1) time series. This shows that the data indicates cointegration.

If vector of cointegration factor is unknown, then an estimation of the cointegration relationship is required

Engle-Granger Approach

Estimation of parameters can be done by OLS estimation of the linear regression equation:

$$Y_t = \gamma_0 + \gamma_1 Y_{2t} + \ldots + \gamma_M Y_{Mt} + \varepsilon_t$$

Dickey-Fuller t test is applied to the OLS residuals $\hat{\boldsymbol{\varepsilon}}_{t}$. Rejecting the null hypothesis of non-stationarity concludes "cointegration relationship" does exist.

Note: We have to keep in mind that the use of $\hat{\boldsymbol{\varepsilon}}_t$ has consequences for the critical values of the ADF test. In comparison to the critical values of the usual Dickey-Fuller the critical values here are in absolute values higher and depend on the number of included variables M. If the cointegration relation contains a deterministic trend we speak about a deterministic cointegration. The critical values for M (at most equals six) are given by MacKinnon (1991). The critical values of MacKinnon are calculated by:

$$\mathbf{K} = \mathbf{\beta}_{\infty} + \mathbf{\beta}_1 \mathbf{T}^{-1} + \mathbf{\beta}_2 \mathbf{T}^{-2}$$

Three-step approach

1. Determine the I(d) for every variable

- Dickey Fuller, Perron tests H₀: series is non-stationary
- 2. Estimate the cointegration relation by OLS regression
- 3. Test the residuals for stationarity

$$y_{1t} = \beta_0 + \beta_1 y_{2t} + \varepsilon_t \Longrightarrow \varepsilon_t = y_{1t} - \beta_0 - \beta_1 y_{2t}$$
$$\hat{\varepsilon}_t = y_{1t} - \hat{\beta}_0 - \hat{\beta}_1 y_{2t}$$

H₀: series are not cointegrated . ADF Test does not give correct critical values because of the OLS residuals. For this reason, we use MacKinnon Table to determine the critical values

9.5.Error Correction Model

Granger Representation Theorem

Determination of the dynamic relationship between cointegrated variables in terms of their stationary error terms.

For bivariate case: Two integrated I(1) variables y_{1t} and y_{2t} yielding one cointegrated

combination $\boldsymbol{\varepsilon}_t \sim \boldsymbol{I}(0)$

$$\Delta y_{1t} = \lambda_1 \varepsilon_{t-1} + \sum_{i=1}^{p-1} (a_{11i} \Delta y_{1t-i} + a_{12i} \Delta y_{2t-i}) + \varepsilon_{1t}$$

$$\Delta y_{2t} = \lambda_2 \varepsilon_{t-1} + \sum_{i=1}^{p-1} (a_{21i} \Delta y_{1t-i} + a_{22i} \Delta y_{2t-i}) + \varepsilon_{1t}$$

We estimate parameters by OLS. Regression with only stationary variables on both sides.

Multivariate Cointegration Analysis - Johansen Test

VAR(1) having M I(1) variables can be expressed as:

$$Y_t = \mu + \Gamma Y_{t-1} + \varepsilon_t$$

Where, Y, μ and ε are (Mx1) vectors and Γ is an (MxM) matrix.

By subtracting the lagged vectors Y from both sides of the equation we receive the following relation:

$$Y_{t} - Y_{t-1} = \mu + \Gamma Y_{t-1} - Y_{t-1} + \varepsilon_{t}$$
$$\Delta Y_{t} = \mu + (A_{1} - I)Y_{t-1} + \varepsilon_{t}$$
$$\Delta Y_{t} = \mu + (\Gamma - I)Y_{t-1} + \varepsilon_{t}$$

 $\Delta \mathbf{Y}_{t}$ and are I(0) vectors. Thus, the term (Γ - I) \mathbf{Y}_{t-1} must be also I(0). If the variables are not cointegrated, then the matrix Γ is a unit matrix I. If there exists **r** cointegrated relations ($\boldsymbol{\varepsilon}_{t}$ is a (rx1) vector), this term can be written as a I(0) variable:

$$(\Gamma - I)Y_{t-1} = \lambda \gamma' Y_{t-1} = \lambda \varepsilon_{t-1}$$

where γ' is the (rxM) matrix of the cointegration coefficients and λ is a (Mxr) matrix. Multiplying with the cointegration matrix the latter results in the (MxM) matrix (Γ - I). This term is I(0) and λ can be interpreted as the matrix of the M times r error correction coefficients:

$\Delta Y_{t} = \mu + \lambda \varepsilon_{t+1} + e$

This model is a generalization of the ECM in the previous section. If the initial model constitutes a VAR(p) model then the error correction representation contains additionally (p-1) difference terms.

Since the matrix (Γ - I) can be represented by the product of a (rxM) and a (Mxr) matrix, it has the rank r.

This means that the **number of cointegrated relations** is determined by the rank (\mathbf{r}) of the matrix.

In the marginal case r = 0, i.e $\Gamma = I$, the model reduced to a VAR model in differences (M independent random walks). If r equals M we are concerned with M stationary level data, I(0).

Johansen Test

The approach of Johansen is based on the maximum likelihood estimation of the matrix (Γ - I) under the assumption of normal distributed error variables. Following the estimation the hypotheses

$$H_0: r = 0, \quad H_0: r = 1, ..., H_0: r = M-1$$

are tested using likelihood ratio (LR) tests.

Example. Variables are: Exchange rate, interest rates, S&P 500(GLOBAL) index, ISE index from 01.01.2000 to 31.12.2007

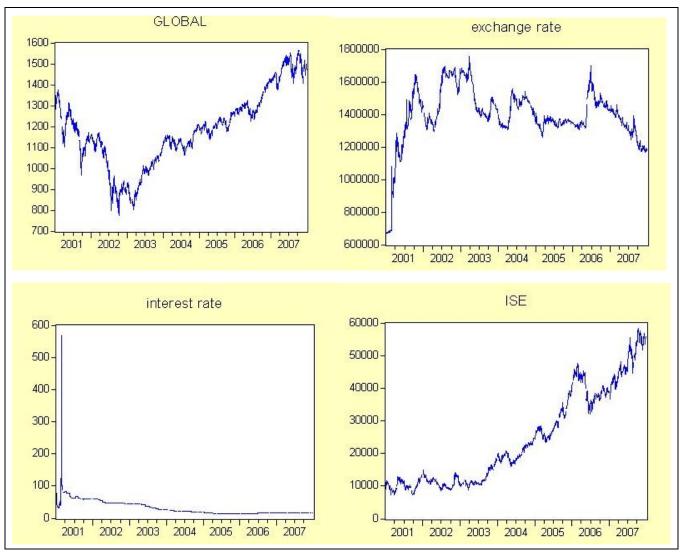


Figure 9.5 Plots of the series

Included observations: 1745 after adjustments Trend assumption: Linear deterministic trend Series: GLOBAL EXCHANGE_RATE INTEREST_RATE ISE Lags interval (in first differences): 1 to 4 Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.065285	156.7717	47.85613	0.0000
At most 1 *	0.017048	38.96042	29.79707	0.0034
At most 2	0.005118	8.955273	15.49471	0.3695
At most 3	1.20E-06	0.002096	3.841466	0.9599

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 *	0.065285 0.017048 0.005118	117.8113 30.00514	27.58434 21.13162	0.0000 0.0022
At most 2 At most 3	0.005118 1.20E-06	8.953177 0.002096	14.26460 3.841466	0.2901 0.9599

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

1 Cointegrating Equation(s):Log likelihood-46009.85Normalized cointegrating coefficients (standard error in parentheses)GLOBALEXCHANGE_RATE INTEREST_RATEISE

1.000000	-0.000120 (0.00014)	-16.55210 (1.44457)	-0.026394 (0.00218)	
2 Cointegratin	g Equation(s):	Log likelihood	-45994.85	
	pintegrating coefficien		parentheses)	
GLOBAL	EXCHANGE_RATE	E INTEREST_RATE	ISE	
1.000000	0.000000	-15.66567	-0.024910	
		(1.30729)	(0.00194)	
0.000000	1.000000	7382.376	12.36210	

(1649.84)

(2.44689)

Therefore, we can conclude that in the long term these three variables are cointegrated and there are 2 cointegration equations.

Pairwise Granger Causality Tests Date: 07/20/08 Time: 10:40 Sample: 1/02/2001 12/31/2007 Lags: 5			
Null Hypothesis:	Obs	F-Statistic	Probability
INTEREST_RATE does not Granger Cause EXCHANGE_RATE EXCHANGE_RATE does not Granger	1745 Cause	28.3482	1.1E-27
INTEREST_RATE		32.1459	2.0E-31
ISE does not Granger Cause EXCHANGE_RATE EXCHANGE_RATE does not Granger Cau	1745 se ISE	58.2545 2.31559	3.6E-56 0.04151
GLOBAL does not Granger Cause EXCHANGE_RATE EXCHANGE_RATE does not Granger GLOBAL	1745 Cause	21.4690 1.16105	6.7E-21 0.32611
ISE does not Granger Cause INTEREST_RATE INTEREST_RATE does not Granger Cause	1745 ISE	12.2991 0.10286	9.7E-12 0.99158
GLOBAL does not Granger Cause INTEREST_RATE INTEREST_RATE does not Granger GLOBAL	1745 Cause	2.98831 1.48645	0.01084 0.19105
GLOBAL does not Granger Cause ISE ISE does not Granger Cause GLOBAL	1745	20.7727 1.91422	3.3E-20 0.08894

References:

- 1. Utts, J., Heckard, R. (2007) Mind on Statistics, 3rd Ed., Thomas.
- 2. Selvanathan, A et al. (2004): Australian Business Statistics, 3rd edition (Abridged), Nelson
- 3. Enders, W., Applied Econometric Time Series, Second Edition, Wiley.
- 4. Shumway, R.H., Stoffer, D.S., Time Series Analysis and its Applications, Springer, 2000
- 5. Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994
- 6. Brockwell P.J. and Davis R.A, Introduction to Time Series and Forecasting, Springer, 1996.
- 7. Kirchgaessner, G., Wolters, J., Introduction to Modern Time Series Analysis, Springer, 2008.