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Course Outline 

 

 

The study of the sequence of data points measured at successive times enables us to often either 

to understand the underlying theory of the data points (where did they come from what generated 

them), or to make forecasts (predictions). Time series prediction is the use of a model to predict 

future events based on known past events: to predict future data points before they are measured.  

 

The objective of the course is to provide students to learn time series modelling in theory and 

practice. The course will start with reviewing the fundamental concepts in regression analysis. 

Autocorrelation function, Linear Stationary models: General linear process, Autoregressive, 

Moving averages, ARMA processes, Non-stationary models: Autoregressive Integrated Moving 

Average and Integrated Moving Average processes, Forecasting: Minimum Mean Square Error 

Forecast, updating forecasts,  Stochastic Model building: Model identification, Model 

estimation (maximum likelihood estimation), Model diagnostic checking, Seasonal models, 

Spectral analysis and filtering, Vector Autoregressive Models, and cointegration will be covered. 

 

Course Schedule 

Lecture Topics Chapters to be covered 

Day 1 Introduction, classical Time series 1-4 

Day 2 Stochastic Time series 4 

Day 3 Forecasting, Integrated models, unit root 5-6 

Day 4 Multiplicative seasonal models, ARCH (m) 7-8 

Day 5 Vector Autoregressive Models and Cointegration 8-9 

 

Teaching Methods: 

Presentation of teaching materials include introduction of the theoretical base with illustrative examples and 

exercises solved in the class. Tutorials enhance the application of the theory and the interpretation of the 

results. Application to data set by using Software Eviews will be presented during PC Pool sessions. Students 

are strongly recommended to participate lectures and tutorials.   

Grading: 

Final Exam (75%)  

A comprehensive 90 min. final exam will be given. The test will be in-class and closed-book exam. If you 

miss the final exam, you will be treated according to the regulations of the University. Students are required 

to pass at least 50% of the final examination. 

Assignments (25%) 

A group of two students will submit one set of assignment given during the teaching period. The deadline of 

all assignments are due to the Final Examination (August 4, 1011, 14:00 h) 

http://en.wikipedia.org/wiki/Forecast
http://en.wikipedia.org/wiki/Model_%28abstract%29
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Chapter 1 

Review of Statistics 

 

Definition:  A  numerically valued function X of w with domain ,  

          )(: wXww   is called a random variable (r.v). 

Proposition:  If X and Y are random variables, then any mathematical combination of 

those, such as, bYaXandY
Y

X
XYYXYX )0(,,,  are also 

random variables. 

 

                    

4

4

3

3

2

4

4

3

3

2

)()(

)()(

)()(

)()(

)()(

)()(

)()(

)()())((

)(||||

)()(

)()()(

)()(

)()(yprobabilit

,2,1

duufX

duufX

duufX

duufu

xfX

xfX

xfX

xfx

Kurtosis

Skewness

Variance

XQE

duufuVPcondition

duuufVPXE

duufPxFxXP

duufPbxaP

udFduufP

unVRange

CaseDensityCaseCountable

n

nn

nn

x

xV

n

b

abVa

n

n

n

n

n



 

 

Independent Random Variables:  

 

If two variables X and Y are independent, then the following hold 
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The Normal Distribution 

 

Normal (Gaussian) distribution has the following properties: 

o symmetrical 

o easy to estimate probabilities 

o inferential statistics 

 

The Normal Distribution is the most commonly used distribution in statistics. It has a 

unique mode. The observations lie around the mean, median and mode value symmetrically. 

The density, mean, variance of the distribution are: 
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Standard Normal Distribution is used to define the variables which are originally normally 

distributed and standardized around the mean. 
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Theorem 1: If X is 0),,( 22N ,then the r.v 
X

W  is )1,0(N . 

Theorem 2: If the r.v X is 0),,( 22N , then the r.v 
2

2)(X
V  is a Chi-square 

distribution with degrees of freedom 1, )1(2 . 

 

 

Hypothesis Testing 

 

A statistical hypothesis is a statement about the distribution of X. If the hypothesis 

completely specifies the distribution, then for a simple hypothesis, we define 
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otherwise, a composite hypothesis is defined as 
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Critical region is the subset of sample space that corresponds to rejecting the null 

hypothesis. 

Type I error refers Rejecting a true 0H ; Type II error and Type II error refers to Failing to 

reject a false 0H  (Accepting a false 0H ). The probabilities of those errors define:  

)( errorITypeP  and )( errorIITypeP  

 

For simple 0H , the probability, of rejecting a true )(0H  is referred to as the significance 

level, denoted by . 

For composite 0H , the size of the test (critical region) is the maximum probability of 

rejecting 0H  when it is true. 

 

Standard approach specified select some acceptable level of  determine the value of 

critical value. Among all critical regions of size , we choose the one with smallest . The 

power function )(K is the probability of rejecting 0H  when the true value of the 

parameter is . 

 

Example: Suppose the random variable denotes waiting times in a bank queue. The aim is 

to determine if the mean waiting time is equal to 7 minute. or not is tested based on a 

random sample of 315 observations as follows: 

 

One-Sample t-Test 

 Test Value = 7           

  t df Sig. 

(2-tailed) 

Mean 

Difference 

95% Confidence Interval 

of the Difference 

  

          Lower Upper 

Wait time 

in min. 

-25.490 314 .000 -1.6748 -1.8041 -1.5455 

 

 

Tests of Normality 

 

1. Parametric approach  : Goodness of fit tests 

2. Non-parametric approach: Kolmogrov-Smirnov tests 



7 

 

3. Graphical approach: P-P, Q-Q plots are the graphs of percentiles of ordered 

observations. They should form a linear pattern. 

 

 Jarque-Bera test statistics: depends on the values of sample skewness and kurtosis 

 For a normally distributed random variable (r.v.) Skewness S(y)≈0;   Kurtosis K(y) 

≈3 

 

Example: Q-Q Plot of the example on the waiting times in the queue 

 

Normal Q-Q Plot of Wait time in minutes
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One-Sample Kolmogorov-Smirnov Test Variable: Waiting time 

 

   Wait time in 

miutes 

N   315 

Normal Parameters Mean 5.3252 

  Std. Deviation 1.16614 

Most Extreme Differences Absolute .039 

  Positive .039 

  Negative -.028 

Kolmogorov-Smirnov Z   .686 

Asymp. Sig. (2-tailed)   .734 
 

 

a  Test distribution is Normal. 

b  Calculated from data. 
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Jargue-Bera Test: 

 

 

 

The test statistics is:  

 

                     

T : the number of the observations in the sample, ŝ : sample skewness; k̂ : sample 

kurtosis, 

0 :H  Data set is normally distributed versus alternative that data follow a different 

distribution. Some significance values are: 1% ≈ 9,21 and 5% ≈ 5,99 

 

Use of Graphics in Analyses 

 

 

Illustrstive representation of the observations give researcher an important information on 

analysing the behavior and the pattern of the data set. There are many graphical methods 

which depend on the type of the data as well as the choice of selection.  

 

Examples: The following is the illustrations for some graphical representations which are 

commonly used for quantitative and qualitative data sets. 
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Bar Chart and clustered bar chart 

    

Source: http://www.strategicinit.com/_borders/car_imp_bar_chart.jpg 

 

 

Stacked bar chart 

 

The variables in this graph are the revenues which result from the different service lines 

(Accommodation, Food& Drinks and Recreation) on the French Rivera. The categories are 

the quarters Q1, Q2, Q3 and Q4.  

 

 

Source: https://zinc.isc-seo.upenn.edu/wi/help/EN/images/Ewbu26048a.gif 

 

Pie chart 

The variables in the pie chart are the numbers of bookings in percentages in march 2007. 

The categories are the different months in which the holidays will start. The most booked 

holidays in march are booked for April, May, June, July and August. 
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Source: FVW Travel Magazine 12/ 2007 page 38 

 

 

Histogram 

 

Source: http://sofia.fhda.edu/gallery/statistics/images/histogram1.gif 

 

 

The variables in this graph are the numbers of frequencies. The categories are the different 

weights in pounds. The histogram describes a right skewed curve. With 24 has the weight 

of 157.5 the highest frequency. 
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Line graphs 
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Since 1988 the bond return rate and the inflation rate converge. Maybe in the future there 

will be equal. 

 

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

1985 1990 1995 2000 2005

Year

B
o

n
d

 r
e
tu

rn
 (

%
)

Bond return (%)

Inflation rate (%)

Linear (Bond return (%))

Potenziell (Inflation rate (%))

 

 

The bond returns rate decrease. The inflation rate will be equal. The inflation rate was the 

highest in the time between 1988 and 1990. 

 

 

 

 



12 

 

Use of Descriptive Statistics 

 

Example: The series inflation rate and bond return 

Measures of Location: 

 

 N Minimum Maximum Mean 

 Inflation rate 

(%) 

17 0,3 7,5 3,394 

 Bond return 

(%) 

17 5,0 13,4 8,247 

 

 

Measures of Dispersion: 

 N Range Std.   

Deviation 

Variance 

 Inflation rate 

(%) 

17 7,2 2,3015 5,297 

 Bond return 

(%) 

17 8,4 2,7178 7,386 

 

 

Example: Waiting times in a bank queue 

 

 

 

N Range Minimum Maximum Mean Std. 

Deviation 

Variance 

Wait time 

in min. 

315 7.54 2.36 9.90 5.3252 1.16614 1.360 

 

 

 N Mean Std. 

Deviation 

Std. Error 

Mean 

Wait time 

in min. 

315 5.3252 1.16614 0.06570 

 

 

Association between two variables 

 

1,1 [( )( )] ( , )

[( )( )] [ ]

X Y XY

XY X Y X Y

E X Y Cov X Y

E X Y E XY
 

is called the Covariance between random variables X and Y. 

 

Theorem: If random variables X and Y are independent, then Cov(X,Y)=0.  

 

Remark: The reverse is not always true. 

 

Theorem: Let 
1 2, ,.., nX X X  be random variables having finite variances, 

1 2

2 2 2, ,...,
nX X X
, 
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respectively, and covariance, 0 , 1,2,..,
i jX X i j i j n . Define a new random 

variable 
1

n

i i

i

Y a X  for any set of constants 
ia , i=1,..,n. Then 

2 2

1 1

[ ] [ ] [ ] 2
i j

n n

Y i i i i i j X Xi j
i i

Var Y Var a X a Var X a a  

Example: Let 
1 2,X X  be r.v’s having means 

1 2
,X X , variances 

1 2

2 2,X X
 and covariance 

1 2
0X X

 

1 2

1 2 1 2
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Correlation Coefficient 

 

Definition: Let 
1 2,X X  be r.v’s having means 

1 2
,X X , variances 

1 2

2 2,X X
 and covariance 

1 2
0X X

, the correlation coefficient, ; the measure of association between two variables 

is 

1 2

1 2

1 2

1 2

( , )
; 1 1

[ ] [ ]

X X

X X

Cov X X

Var X Var X
 

 

Example:  

Pearson´s Correlation:  

   Bond return (%) Inflation rate (%) 

 Bond return (%) Correlation 1 0,688 

   Sig. (2-tailed) 0 0,002* 

   N 17 17 

 Inflation rate (%) Correlation  0,688 1 

   Sig. (2-tailed) 0,002* 0 

   N 17 17 
 

**  Correlation is significant at the 0.01 level (2-tailed). 
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The Method of Least Squares: 

 

Given a linear equation , the estimated line  requires 

the estimation of the parameters α and β.  To attain the best fit the estimates of α and β 

should minimize the sum of squared errors as flows: 

 

 . Letting  and  

 

 ,      result in the normal equations 

 

  

 

  

 

Solving two equations and two unknowns give: 

 

 ;    

 

 

Example: Simple Linear Regression Analysis 

 

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 

randomly selected weeks as follows 

Scatter Diagram
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WEEK X* Y* X
2 

Y
2 

XY 

1 1.3 10 1.69 100 13 

2 2 6 4 36 12 

3 1.7 5 2.89 25 8.5 

4 1.5 12 2.25 144 18 

5 1.6 10 2.56 100 16 

6 1.2 15 1.44 225 18 

7 1.6 5 2.56 25 8 

8 1.4 12 1.96 144 16.8 

9 1 17 1 289 17 

10 1.1 20 1.21 400 22 

sum 14.4 112 21.56 1488 149.3 

* Thousand of gallons 

 

Normal equation: 

10

10

ˆ4.14ˆ)10(1120

ˆˆ
ii xny

 

 

8.119)112)(4.14(149)10(

23361121488)10()(

24.8)4.14(56.21)10()(

222

222

yxxynS

yynS

xxnS

xy

yy
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14.32
10

4.14
)54.14(

10

112ˆˆ

54.14
24.8

8.119

)4.14()56.21)(10(

112)4.14()3.149)(10(ˆ

0

21

xy

S

S

xx

xy

 

 

Regression Equation: 

xy 54.1414.32ˆ  

 

86.0
1121488)10(4.1456.21)10(

112)4.14(3.149)10(

22
yyxx

xy

SS

S
r  

 

By using bivariate normal approach 
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xxE

xE

xY

xY

48.1405.32)44.1(
827.0

833.4
86.02.11

)( 1

1

2
2

 

Standard error of estimate: 

 

week 

X 

Actual 

Y 

Estimated 

Y 

Error 

e e2 

1 1.3 10 13.238 -3.238 10.48464 

2 2 6 3.06 2.94 8.6436 

3 1.7 5 7.422 -2.422 5.866084 

4 1.5 12 10.33 1.67 2.7889 

5 1.6 10 8.876 1.124 1.263376 

6 1.2 15 14.692 0.308 0.094864 

7 1.6 5 8.876 -3.876 15.02338 

8 1.4 12 11.784 0.216 0.046656 

9 1 17 17.6 -0.6 0.36 

10 1.1 20 16.146 3.854 14.85332 

sum 14.4 112 112.024 0 59.42482 

 

72.2
8

42.59

2

)ˆ(

2
ˆ

22

n

yy

n

error
e  

 

Predicting Y: 

 

Suppose Mr. Bump wished to forecast the quantity of milk sold if the price were set at 

$1.63. 

 

44.863.1)54.14(14.32ˆ
63.1xY

Ey  or 8,440 gallons. 

 

Standard error of the forecast measures when x=1.63 is 

 

90.2
8240.0

)44.163.1(

10

1
172.2

)(

)(1
1

2

2

2

xx

xx

n i

ep  

 

Then 95% prediction interval is 

 

8.44 ± tn-2, 0.025 2.90      =>       8.44±2.306(2.90)   => (1.753, 15.121) 
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Inferences on β1: 

 

Standard error of estimator of β1 

 

00.3
824.0

72.2

)( 21

xxS

e

xx

e  

 

The 95% confidence interval is: 

 

-14,54± tn-2, 0.025(3.00)    =>  -14.54± 6.918   => (-21.458, -7.622) 

 

 

Hypothesis Testing 

 

H0: β=0  vs   H0: β≠0 

 

8.4
00.3

054.14
t  < -2.306    Reject Ho. 

 

 

 



18 

 

 

Chapter 2 

Introduction to Time Series 

 

 Examples of Time Series 

 

1. Economic Time Series: share prices on successive days, export totals on successive 

days, average incomes in successive months, company profits in successive years, 

Annual growth rate, Seasonal ice cream consumption, Weekly traffic volume 

2. Physical Time Series: Meteorology, marine science and geophysics 

   Hourly temperature readings, Rainfall in successive days, air temperature in successive  

   hours, Electrical signals 

3. Marketing Time series: Advertising expenditure in successive time periods, the analysis 

of sales figures in successive weeks/months 

4. Process Control: to detect the changes in the performance of a manufacturing process 

by measuring variable which shows the quality of the process. 

5. Binary process: Observations can take one of only two values, usually denoted by 0 and 

1. Particularly in communication theory. 

6. Point process: A series of events ocurring randomly in time. Dates of a major railway 

disasters. Distribution of the no. of events and the time intervals between events are 

concerned. 

7. Demographic Time Series: in the study of population to predict the changes in 

population 

8. Data in business, economics, engineering, environment, medicine, earth sciences, and 

other areas of scientific investigations are often collected in the form of time series, i.e. 

Daily stock prices 

 

Objectives of Time Series 

 

1. Description: to detect the data and to obtain simple descriptive measures, to detect 

outlers and adjust to its expected value, to detect turning points (i.e. upward trend 

suddenly changed to downward trend) 

2. Explanation: the variation in one series to explain the variation in another series. 

Multiple linear regression and linear systems are useful 

3. Prediction: Given the observed time series to predict future values of the values 

4. Control the Process : control charts 

 

2.1. Time Series Components 

 

Definition: A Stochastic Process is a process that developes in time according to 

probabilistic laws. Let tX  a string of random variables, Xt is the observation at time t. 

We usually observe only one realization of a stochastic process over a finite period of time. 
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Definition: A Time Series is a set of observations generated sequentially in time. They are 

statistically dependent observations. It is a particular realization of Stochastic Processes. If t 

is continuous, we have continuous time series. If the realizations are taken at specific time 

points it is discrete type of time series. 

 

Types of variation 

TS=TrendxSeasonalxCyclicalxIrregular 

 

Seasonal: A pattern of change that repeats itself period after period. 

Cyclical: Variation at a fixed period due to some other physical cause. i.e. business cycles  

with a period of 5 and 7 years. 

Trend: Lond-term change in the mean which represents the growth or decline in the time 

series over extended period of time 

Irregular: Series of residuals. It measures the variability of the time series after the other 

components are removed. 

 

Definition: Time Series is said to be stationary if there is no systematic change in mean (no 

trend), no systematic change in variance and if strictly periodic variations have 

ben removed. 

 

Examples: The following graphs illustrate different series plotted against different time 

periods. 
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2.2. The steps in Time Series: 

• Model Identification 

– Time Series plot of the series 

– Check for the existence of a trend or seasonality 

– Check for the sharp changes in behavior 

– Check for possible outliers 

• Remove the trend and the seasonal component to get stationary residuals.  

• Estimation  

– Method of Moments Estimation (MME) 

– Maximum Likelihood Estimation (MLE) 

• Diagnostic Checking 

– Normality of error terms 

– Independency of error terms 

– Constant error variance (Homoscedasticity) 

• Forecasting 

– Exponential smoothing methods 

– Minimum mean square error (MSE) forecasting 

 

Transformation 

 

The reasons to use transformation on data are to stabilize the variance, to make the seasonal 

effect additive and to make the data normally distirbuted. For example, when the standard 

deviation is proportional to the mean, logarithmic transformation is useful. If there is a 

trend in the series and the size of the seasonal effect appears to increase with the mean, 

transformation is required. If seasonal effect is directly proportional to the mean, seasonal 

effect is said to be multiplicative and logarithmic transformation is used. 

 

There are three types of seasonal models: 

a. Xt= t+St+ t   additive model, no transformation is needed. 

b. Xt= t St t     logarithmic transformation 

c. Xt= t St+ t 

where t is the mean; St is the seasonality effect and t is the irregular effect 

 

Analysing series which contain a trend 

 

We measure the trend and/or remove the trend in order to analyze the fluctuations. With 

seasonal data start with calculating the successive yearly averages. The techniques used are 

polynomial fitting, difference filters.  

 

1. Polynomial fitting such as a polynomial curve (linear, quadratic etc.) , logistic 

function or Gompertz function etc. 
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Logistic function: 

log

( ) ; , , , / 0
1

lim ( ) 0

ct

t

a
f t t a b c

be

f t a if c

  

A resembles the maximum growth of the system. 

 

Mitscherlich Curve 

This function models the long term growth of a system.  

log

( ) ; 0, , , 0

lim ( )

ct

t

f t a be t a b c

f t a
 

where a is the saturation value of the system. The initial value of the system is f(t)=a+b. 

 

Gompertz Function 

To model the increas or decrease of the system. 

log

( ) exp ; 0, , , (0,1)

log ( )

t

t c

f t a bc t a b c

f t a be
 

 

Allometric Function 

Used commonly to model the trend function in biometry and economics. 

( ) ; 0, , 0

log ( ) log log Cobb-Douglas Function

af t bt t a b

f t b a t
 

Fitted function provides of the trend, and the esiduals provide an estimate of local 

fluctuations. 

 

2. Linear Filters 

Let shh aaa ,...,, 1  be arbitrary numbers having h, s≥0, h+s+1≤n, The linear 

transformation hnstXaX
s

hi

itit ,..,1; , is linear filter with weights 

shh aaa ,...,, 1 . 

For shh aaa ,...,, 1  satisfying the condition 1
s

hi

ia , then the process is called Moving 

Average of order s. 
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Difference Filters 

Lemma: For a polynomial p

ptataatf ..)( 10 of degree p, the difference 

))1(..)1(()..()1()()( 1010

p

p

p

p tataatataatftftf is a 

polynomial of degree at most p-1. 

 

For a linear filter 1ttt XXX  of order 1. 

211

2 2)( ttttttt XXXXXXX  of order 2. 

)( 1

t

p

t

p XX  of order p. 

 

If a time series has a polynomial trend of order p, then the difference filter of order p 

removes the trend up to a constant. 

 

 

Example: The series having an upward trend (left) is detrended by taking the difference 

once (p=1) (plot given on the right) 

 

             

 

 

  

Backward shift Operator (B or L) 
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Chapter 3 

Classical Time Series Modeling 

 

According to classical time-series analysis an observed time series is the combination of 

some pattern and random variations. The aim is to separate them from each other in order 

to describe to historical pattern in the data, and to prepare forecasts by projecting the 

revealed historical pattern into the future. Traditionally, there are two types of methods for 

identifying the pattern. (i). Smoothing: The random fluctuations are removed from the data 

by smoothing the time series.(ii).Decomposition: The time series is broken into its 

components and the pattern is the combination of the systematic parts. 

 

The pattern itself is likely to contain some, or all, of the following three components: trend, 

seasonal and cyclical. 

 

Trend: The long-term general change in the level of the data with a duration of longer 

than a year. it can be linear (straight line) or non-linear (smooth curve), like e.g. exponential, 

quadratic. 

 

Seasonal variations: Regular wavelike fluctuations of constant length, repeating 

themselves within a period of no longer than a year. Seasonal variations are usually 

associated with the four seasons of the year, but they may also refer to any systematic 

pattern that occurs during a month, a week or even a single day. 

 

Cyclical variations: Wavelike movements, quasi regular fluctuations around the long-term 

trend, lasting longer than a year. 

 

Some examples to illustrate these patterns are given in the following figures as follows: 

 

 

a. Hourly earnings of manufacturing in major seven countries 

Sep-70 Sep-80 Sep-90 Sep-00

120
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60
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Hourly earnings: Manufacturing: Major seven countries
1995=100
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b. Quarterly amount of Cement as commodity output for Hungary between1991-2000 

 

 

c. Monthly Retail turnover for Australia between 1983-2001 

 

 

d. Number of new houses approved in Australia (1970-2000) 
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e. Construction expenditure in USA (1960-2000) 

Figure 3.1: Figures a-e are the examples to the components of a time series data (source: 

Selvanathan et al. 2004) 

 

The time period between the beginning trough and the peak is called expansion phase, 

while the period between the peak and the ending trough is termed contraction phase. 

Cyclical variations are often attributed to business cycles, i.e. to the ups and downs in the 

general level of business activity. Seasonal and cyclical variations might be very similar in 

their appearance. However, while seasonal variations are absolutely regular and occur over 

calendar periods no longer than a year, cyclical variations might and do change both in their 

intensity (amplitude) and duration, and they last longer than a year. It is far more difficult to 

study and predict the cyclical component than the seasonal component. 

 

The random variations of the data comprise the deviations of the observed time series from 

the underlying pattern. When this irregular component is strong compared to the (quasi-) 

regular components, it tends to hide the seasonal and cyclical variations, and it is difficult 

to be detached from the pattern. However, if we manage to capture the trend, the seasonal 

and cyclical variations, the remaining changes do not have any discernible pattern, so they 

are totally unpredictable.  

 

The four components of a time series (T: trend, S: seasonal, C: cyclical, R: random) can be 

combined in different ways. Accordingly, the time  series model used to describe the 

observed data (Y) can be either  

Additive                          , or Multiplicative: 

 

For example, if the trend is linear, these two models look as follows: 

 

 

 

In an additive model the seasonal, cyclical and random variations are absolute deviations 

from the trend. They do not depend on the level of the trend, whereas in a multiplicative 

model the seasonal, cyclical and random variations are relative (percentage) deviations 

from the trend. The higher the trend, the more intensive these variations are. 
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Figure 3.2: Examples to the additive and multiplicative time series (Source: Selvanathan et al. 

2004) 

 

These time series have an increasing linear trend component, but the fluctuations around 

this trend (the first figure above) have the same intensity; the fluctuations around this trend 

(the second above) are more and more intensive. Though in practice the multiplicative 

model is the more popular, both models have their own merits and, depending on the nature 

of the time series to be analysed, they are equally acceptable.  

 

3.1. Smoothing Techniques 

 

They are used to remove, or at least reduce, the random fluctuations in a time series so as to 

more clearly expose the existence of the other components. There are two types of 

smoothing methods: (i) Moving averages: A moving average for a given time period is the 

(arithmetic) average of the values in that time period and those close to it. (ii) Exponential 

Smoothing: The exponentially smoothed value for a given time period is the weighted 

average of all the available values up to that period. 
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Example: Moving Average 

Given the sales per day in the following table,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Plots of original, MA(3) and MA(5) series 

 

3-day Moving averages (MA(3)) and 5-day Moving averages (MA(5)) are given in Figure 

3.3. In this figure blue diamond, red dots and green triangles represent the original, MA(3) 

and MA(5) series, respectively. This figure suggests that the longer the moving average 

period the stronger the smoothing effect, the shorter the smoothed series. When the moving 

average period is relatively large, along with the random variations, the seasonal and 

cyclical variations are also removed and only the long-term trend can be revealed.  

 

Exponential Smoothing 

Let St : exponentially smoothed value for time period t ; 

 

where    

St-1 : exponentially smoothed value for time period t -1; 

Yt : observed value for time period t ; 

w : smoothing constant, 0 < w < 1. 
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Note: Assuming that Y has been observed from t =1, this formula can be applied only from 

the second time period. For t = 1 we set the smoothed value equal to the observed value, i.e. 

S1 = Y1. The smoothing constant determines the strength of smoothing, the larger the value 

of w the weaker the smoothing effect. 

The formula for the exponentially smoothed series can be expanded as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The impact of the value of w on convergence 

 

The exponentially smoothed value for period t depends on all available observations from 

the first period through period t, but the weights assigned to past observations, w(1-w) 

decline geometrically with the age of the observations (Figure 3.4). Beyond a certain age 

the observations do not really count since they do not have measurable effects on the 

exponentially smoothed value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Exponentially smoothed series for different w. 
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Figure 3.4 shows that if w = 0.2, w(1-w)
t
 approaches zero relatively slowly and even 

w(1-w)
10

 is substantial. On the other hand, if w = 0.6, w(1-w)
t
 approaches zero much faster 

and at t = 6 it is already negligible. 

 

 

 

 

 

 

 

 

 

2 2 1

3 3 2

(1 ) 0.2 1507.9 0.8 1735.6 1690.1

(1 ) 0.2 1450.2 0.8 1690.1 1642.1

S wY w S x x

S wY w S x x  

for w = 0.7, St is quite similar to Yt, i.e. there is very little smoothing. However, if w = 0.2, 

St does not have the seasonal pattern of Yt, i.e. there is far more smoothing. 

 

3.2 Capturing the Components 

 

Smoothing procedures are used to facilitate the identification of the  systematic 

components of the time series. If we manage to decompose the time series into the trend, 

seasonal and cyclical components, then we can construct a forecast by projecting these 

parts into the future. 

 

Trend analysis: The easiest way of isolating a long-term linear trend is by simple linear 

regression, where the independent variable is the t time variable.  

 

0 1t tY t   and t is equal to 1 for the first time period in the sample and increases by 

one each period thereafter. After having created this variable, this linear time trend model 

can be estimated as any other simple linear regression model. It should be noted that this 

model is not appropriate if the trend is likely to be non-linear. 

 

Example: The graph below shows exports of footwear ($m) from 1988 through 2000. This 

time series has an upward trend, which is perhaps linear perhaps not. We fit first a linear 

regression model to the data and test the significance if the model is appropriate. To 

estimate a linear trend line, first you have to create a time variable t and then regress 

fwexport on t. 

  

 

 

 

Y S (w=0.2) S (w=0.7)

1989 1 1735.6 1735.6 1735.6

2 1507.9 1690.1 1576.2

3 1450.2 1642.1 1488.0

4 1402.7 1594.2 1428.3

1990 1 1689.9 1613.3 1611.4

2 1621.4 1615.0 1618.4

etc. etc. etc.

ˆ 15.308 4.505y t

1988 1 14

1989 2 23

1990 3 22

1991 4 30

1992 5 36

1993 etc etc
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Figure 3.6: The plot of the original series and the trend analysis 

 

Therefore, for example, in 1988 (t = 1) it is  

and in 1999 (t = 12) it is  

 

Measuring the cyclical effect 

 

Assume that the time series model is multiplicative and consists of only two parts: the trend 

and the cyclical components so that  

t
t t t t

t

Y
Y T xC C

T
. Under these assumptions the cyclical effect  can be measured by 

expressing the actual data as the percentage of the trend: 100
ˆ
t

t

Y
x

Y
. 

 

Example continued: Calculate and plot the percentage of trend. 

 

 

 

 

 

 

 

 

So in 1988 the actual exports of footwear were about 29% below the trend line. 

Note:  We have assumed that the time series pattern does not have a seasonal component 

and that the random variations are negligible. The first of these assumptions is certainly 

satisfied since the data is annual. However, when these assumptions are invalid, we should 

remove the seasonal and random variations before attempting to identify the trend and 

cyclical components. 
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ˆ 15.308 4.505 12 69.368  $my

year t fwexport y-hat y/y-hat*100

1988 1 14 19,81 70,66

1989 2 23 24,32 94,58

1990 3 22 28,82 76,32

1991 4 30 33,33 90,01

1992 5 etc. etc. etc.

14 /19.81*100 71
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Measuring the seasonal effect 

 

Depending on the nature of the time series, the seasonal variations can be captured in 

different ways.    

ii..  Assume, for example, that the time series does not contain a discernible cyclical 

component and can be described by the following multiplicative model  

 

t
t t t t t t

t

Y
Y T xS xR S xR

T
 

This suggests that dividing the estimated trend component ( Ŷ ) into the time series we 

obtain an estimate for the product of the seasonal and random variations. 

Seasonal Factor: 100
ˆ
t

t

Y
x

Y
. In order to remove the random variations from this ratio, we 

average the seasonal factors for each season and adjust these averages to ensure that they 

add up to the number of seasons. This can be achieved by seasonal indices. 

 

Example: The graph below shows retail turnover for households goods ($m) from the 

second quarter of 1982 through the fourth quarter of 2000. 

 

 

Figure 3.7 Quarterly retail turnover on household good retailing (1982-2000) 

 

This time series has an upward linear trend and quarterly seasonal variations. It probably 

has some cyclical variations too, but this third component seems to be less significant than 

the other two. Estimated trend line is   

 

We estimate seasonal factors and the indices: 
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In order to find the seasonal indices the seasonal factors (Y/ Ŷ ) have to be grouped, 

averaged and, if necessary, adjusted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These seasonal indices suggest that in the March, June and September quarters retail 

turnover is expected to be 7.0, 4.9 and 3.7% below its trend value, while in the December 

quarter retail turnover is expected to be 15.6% above its trend value. 

 

ii.  When the time series model is multiplicative and has all four parts, i.e. a trend, a 

cyclical component, a seasonal component and random variations, 

 

t t
t t t t t t t

t t t

Y Y
Y T xC xS xR S xR

CMA T xC
 

the data is first divided by (centered) moving averages, which are supposed to capture the 

trend and cyclical components, then the seasonal factors and indices are calculated from 

these ratio-to-moving averages and the trend and cyclical components are estimated from 

the centered moving averages, instead of the original data. 

 

Note:  The order of the centered moving average must be equal to the number of seasons. 

For example, we use 4-quarter CMA if the data is quarterly and seasonality has 4 phases a 

year, and we use 12-month CMA if the data is monthly and seasonality has 12 phases a 

year. 

 

quarter t retail y-hat y/y-hat

Jun-82 1 1553.2 1625.8 0.955

Sep-82 2 1601.9 1662.4 0.964

Dec-82 3 2052.2 1699.0 1.208

Mar-83 4 1666.0 1735.6 0.960

Jun-83 5 1680.4 1772.2 0.948
1553.2 /1625.8 0.955

Year Q1 Q2 Q3 Q4

1982 0.955 0.964 1.208

1983 0.960 0.948 0.962 1.240

1984 0.948 0.890 0.905 1.163

etc. etc. etc. etc. etc.

1998 0.914 0.908 0.909 1.031

1999 0.909 0.922 0.971 1.129

2000 0.973 1.043 0.990 1.144

Sum 16.728 18.062 18.283 21.945 Total

Average 0.929 0.951 0.962 1.155 3.997

Index 0.930 0.951 0.963 1.156 4.000

4.000
0.929 0.930

3.997

93.0%MarI 96.3%SepI

95.1%JunI 115.6%DecI
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Example continued: Re-estimate the seasonal component using the ratio-to-moving 

average instead of the original data. 

 

 

 

 

 

 

 

 

 

 

Following the same steps than in part (b) we get the following seasonal indices: 

IMarch=93%, IJune=94.8%, ISept.=96.5%, IDec=115.7%. 

 

This time there is not much difference between the indices computed from the original data 

and the indices computed from the centered moving averages. The seasonal indices can be 

used to deseasonalise a time series, i.e. to remove the seasonal variations from the data. The 

seasonally adjusted data (in publications usually denoted as sa) is obtained by dividing the 

observed, unadjusted data by the seasonal indices.  

 

For example: For the June quarter of 1982 the seasonally adjusted retail turnover is  

 

 

 

 

3.3 Forecasting 

 

After having studied the historical pattern of a time series, if there is  reason to believe that 

the most important features of the variable do not  change in the future, we can project the 

revealed pattern into the future  in order to develop forecasts. 

 

If a time series exhibits no (or hardly any) trend, cyclical and seasonal variations, 

exponential smoothing can provide a useful forecast for one period ahead:   

 

Example: Assume that exponential smoothing with w = 0.2 and w = 0.7 on quarterly 

Australian unemployed persons (in thousands) is applied. Since this time series does have 

some seasonal variations, exponential smoothing cannot be expected to forecast 

unemployment reasonably well. Nevertheless, just for illustration, let us forecast 

unemployment for the first quarter of 1999. 

 

 

 

 

quarter t retail cma(4)

Jun-82 1 1553.2 MISSING

Sep-82 2 1601.9 MISSING

Dec-82 3 2052.2 1734.2

Mar-83 4 1666.0 1767.3

Jun-83 5 1680.4 1814.0

Sep-83 6 etc. etc.

1553.2 / 94.8 100 1638.2 $m

1t tF S

unemployed S (w=0.7)

1998 1 2461,4 2402,8

2 2210,9 2268,5

3 2221,3 2235,5

4 2102,6 2142,5
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This is the smoothed value for the fourth quarter of 1998, and thus the forecast for the first 

quarter of 1999. 

 

If a time series exhibits a long-term (linear) trend and seasonal  variations, we can use 

regression analysis to develop forecasts in two  different ways. 

 

1. We can forecast using the estimated trend and seasonal indices as:  

 

 

2. Alternatively, we can forecast using the estimated multiple regression model with a 

time variable and seasonal dummy variables.  

 

Example: Forecast retail turnover for households goods for the first quarter of 2001 

applying the first approach can be implemented as follows. 

 

Obtain the trend estimate from part a and the March seasonal index from part b so that 

t = 76, I76 = IMar = 0.930 and  

 

 

 

We have predicted retail turnover for households goods for the first  quarter of 2001.  

Suppose we had another forecast value of 4203.4 for the same data and the same time 

period using a different forecasting model. How would we decide which forecast is more 

accurate? However, this does not imply by any means that Model 2 would produce more 

accurate forecast for all time periods than Model 1.  

 

How can we decide which forecasting model is the most accurate in a given situation? 

 

Forecast the variable of interest for a number of time periods using alternative models and 

evaluate some measure(s) of forecast accuracy  for each of these models. Among a number 

of possible criteria that can be used for this purpose  the two most commonly used are 

mean absolute devition (MAD) and Sum of squares of forecast error (SSFE). These are as 

follows: 

 

 

 

 

 

 

 

 

 

0 1
ˆ ˆ( )t t t tF T S t I

ˆ 1589.189 36.604y t

76 76
ˆ (1589.2 36.6 76) 0.930 4064.8F y

1

1 n

t t

t

MAD y F
n

2

1

1 n

t t

t

SSFE y F
n
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Example: Based on the example above two models are proposed. The forecasts with 

respect to the actual values are compared and MAD, SSFE are calculated as follows: 

 

Actual Forecats error Squared error 

Value Model1 Model 2 Model1 Model 2 Model1 Model 2 

6.0 7.5 6.3 -1.5 -0.3 2.25 0.09 

6.6 6.3 6.7 0.3 -0.1 0.09 0.01 

7.3 5.4 7.1 1.9 0.2 3.61 0.04 

9.4 8.2 7.5 1.2 1.9 1.44 3.61 

     7.39 3.75 

Model 1 :    MAD = 4.9/4=1.225    and    SSFE = 7.39/4=1.8475 

Model 2 :    MAD = 2.5/4=0.625    and    SSFE = 3.75/4=0.9375 

According to both criteria Model 2 is the more accurate. 
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Exercises (Assignment 1) 

 1. Given the data below and Excel 

a. Plot the series and comment on the possible components it might have. 

b. Find the smoothed series by using 4-weekMoving Average technique plot the series. 

c. Apply exponential smoothing technique with w=0.3 

d. Decompose the series into its  components and calculate the seasonal indices for 

every quarters 

e. Predict the amount of shipments for the second quarter of 1989. 

 

Year Quarter Private 

Residential 

investments 

(billions 

dollar) 

Trend Year Quarter Private 

Residential 

investments 

(billions 

dollar) 

Trend 

1980 1 34.2 38.5  1983 1 63.8 47.2  

  2 34.3 39.2    2 62.3 47.9  

  3 37.7 39.9    3 48.2 48.6  

  4 42.5 40.6    4 42.2 49.4  

1981 1 43.1 41.4  1984 1 51.2 50.1  

  2 42.7 42.1    2 60.7 50.8  

  3 38.2 42.8    3 62.4 51.5  

  4 37.1 43.5    4 59.1 52.3  

1982 1 43.1 44.3  1985 1 47.1 53.0  

  2 43.6 45.0    2 44.7 53.7  

  3 41 45.7    3 37.8 54.4  

  4 53.7 46.4    4 52.7 55.2  

2.The following data provide the unemployment rates during 10 years from 1990 to 1999 

together with an index of industrial production from Federal Reserve Board. 

Year, X2 Unemployment, Y Index of production, X1 

1990 3.1 113 

1991 1.9 123 

1992 1.7 127 

1993 1.6 138 

1994 3.2 130 

1995 2.7 146 

1996 2.6 151 

1997 2.9 152 

1998 4.7 141 

1999 3.8 159 

Fit a multiple regression model by using software to express the change in unemployment 

in terms of year and the index of production. 
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Chapter 4 

Stochastic Time Series Modeling 

 

4.1 Stationary Models  

1. Strictly stationary process: If the joint dist. of 1
( ,... )

t tn
X X  is the same as the joint 

distribution of 1
( ,... )

t h tn h
X X  

2. Weak stationary process: { }
t

X  is weakly stationary (second-order stationary) if  

i) ( ) ( )
x t

t E X  is independent of t. 

 ii) ( , ) ( , ) [( ( ))( ( ))]
r s x r x s x

Cov X X r s E X r X s  is independent of t for each 

h. 

 

Autocovariance (ACVF) Function 

Let { }
t

X  be a stationary time series with ( )
t

E X  and 
2

( )
t

V X . Autocovariance 

Function of the series is 

 

...),(),(),()(

)((][])([(

),()(

332211 XXCovXXCovXXCovh

XXEXXEXEXXEXE

XXCovh

hhh

thtthtttkthttththt

tht

1,2,3,...tfor    i.e.

2][)0( ttXVar  

Auto-correlation (ACF) Function is 
( ) ov( , )

( )
(0) ( )

x t h t

x t

h C X X
h

Var X
 

 

 

Autocorrrelation (ACF) Function measures the dependency between variables in a series. 

( ) ov( , )
( )

(0) ( )

x t h t

x t

h C X X
h

Var X
 

 

Remark: For a weak stationary time series, mean is constant and covariance depends only 

on lag. 

 

 

Properties:  

1. ACF is an even function of the lag ( ) ( )h h  
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Proof: 

)(

),()(

hXXE

XXE

XXCovh

httht

thttht

tht

tysymmetrici by   

2. ( ) 1h  

Proof: Consider the linear function htt XaXa 21  where ai’s, i=1,2 are any constants. By 

the property of variance 0][ 21 htt XaXaVar  

0)(2)]([

0)(2][][

0],[2][][

21

2

2

2

1

21

2

2

2

1

2121

haaaaXVar

haaXVaraXVara

XXCovaaXaVarXaVar

t

htt

htthtt

 

If a1= a2=1,  1
][

)(
][)(

t

t
XVar

h
XVarh  

If a1= a2=-1,  1
][

)(
][)(

t

t
XVar

h
XVarh  

 

Sample Autocovariance and Autocorrelation Function: 

Let 
1 2
, ...,

n
x x x  be observations of a series. Given the sample mean is

1

1 n

t

t

X x
n

, the 

sample autocovariance function 
1

1
ˆ( ) ( )( )

n h

tt h

t

h x X x X
n

 and the sample 

autocorrelation function  
ˆ( )

ˆ ( )
ˆ(0)

h
h    nhn  where  

2 2 2
ˆ ( )

( )( ) ( )

( ) ( )

t t h t t h t t h

allt allt allt allt

t t t

allt allt allt

h

x x x x x x x x

x x x x
 

Lemma: For standard normally distributed data, i.e. if { }
t

X  independent and identically 

distributed, N (0,1), then sampling distribution of 
1

ˆ ( ) ~ (0, )h N
n

. 

 

Correlogram is an aid to interpret a set of ACF where ˆ( )h , sample autocorrelations are 
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plotted against lag h.  

 

Remarks: 

 For data containing trend ˆ ( )h  will exhibit slow decay as h increases. For data with a 

periodic component ˆ ( )h  will exhibit similar behavior with the same periodicity. If the 

series is random then for large n, ˆ( ) 0h  and 
1

ˆ ~ (0, )
k

N
n

. This leads us to find a 95% 

confidence interval for the population correlation coefficient. Therefore, we can conclude 

that if  95% of ˆ( )h  values lie within 
2

n
 time series is random. 

When there exists a short-term correlation, fairly large value of ˆ(1)  is followed by 2 or 

more coefficients which is significantly smaller than zero, tend to get successively smaller 

and ˆ( )h  gets to zero for large h. In alternating series correlogram also tends to alternate. 

For a non-stationary series: If the series contains a trend, ˆ( )h  values will not come down 

to zero except very large h. Trend should be removed first. In seasonal fluctuations: 

Correlogram exhibit an oscillation at the same frequency. If t
X  follows a sinusoidal 

pattern, then so does ˆ( )h  . 

 

Tests of serial correlation 

 

Durbin Watson statistic (DW) 

DW is used to detect the serial correlation in error process. It is an informative statistics for 

the regression estimations. The test statistics in Durbin Watson is 

2

1

2

2

1

( )
n

t t

t

n

t

t

DW  where εt is the residual from the estimated equation. It can be shown 

that DW≈2-2ρ where ρ is the first order serial correlation coefficient. When there is no 

serial correlation, ρ=0 and DW statistic takes a value close to 2. Positive serial correlation 

produces a DW<2, while negative serial correlation produces a DW>2. This test can also be 

generalized to tests of higher orders. 

 

 

Portmanteau Test:   

An important source of information in detecting the presence and form of serial correlation 
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is the correlogram. Qualitative examination of the correlogram is an important diagnostic 

tool but it does not constitute a formal statistical test. The Box-Pierce and its related test the 

Ljung-Box test are both portmanteu tests which allow us to test the hypothesis that the first 

h points in the correlogram are random with a true value of zero. 

Box-Pierce test statistics is defined as 2

1

ˆ
h

i

i

Q n  

Q is asymptotically distributed as Chi-square distribution with degrees of freedom being h. 

A modified sample statistics is Ljung-Box statistics is 

* 2

1

1
ˆ( 2)

( )

h

ii
i

Q n n
n i

.  

Q
*
 is also distributed Chi-square with degrees of freedom of h. Under the null hypothesis of 

no serial correlation, large Q or Q
*
 value indicates the presence of serial correlation. 

 

 

Example: Given the table below choose the best fitting model. 

 

p q 
2ˆ  

SIC AIC 

0 1 1.033 -9.149 -8.155 

0 2 0.962 -9.191 -8.215 

0 3 0.955 -9.169 -8.210 

2 0 0.984 -9.168 -8.191 

3 0 0.973 -9.149 -8.177 

3 1 0.971 -9.122 -8.181 

1 2 0.964 -9.158 -8.20 

 

Based on the AIC and SIC values the model chosen is ARIMA(0,1,2) 
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Example: Determine which of the series whose corrlograms are given beow, do have serial 

correlation. 
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4.2. The models 

 

1.White noise (WN) Process (Random shock) 

{ }
t

X  is a sequence of independent and identical random variables with zero mean and 

finite variance,
2

, 
2

~ (0, )
t

X WN , { }
t

X  is stationary with  

 

  

2
0

( , )
0 0

x

h
t h t

h
;                ;  

 

White Noise process is a purely random process where all autocorrelation functions for 

every h are close to zero. White noise (in spectral analysis): white light is produced in 

which all frequencies (i.e., colors) are present in equal amount. It is a memoryless process, 

builds block from which we can construct more complicated models and it plays the role of 

an orthogonal basis in the general vector and function analysis. 

 

Example: White Noise process is a purely random process where all autocorrelation 

functions for every h are close to zero. 

-3

-2

-1

0

1

2

3

25 50 75 100 125 150 175

X

 

           Figure 4.1. The plot of index numbers having White Noise model 

 

2. Random Walk 

  Let { , 1, 2, }
t

S t  be a process with 1t t
S X X  where 

2
~ (0, )

t
X WN . Then, 

2 2
( ) 0; ( ) ; ( , )

t t
E S Var S t t h t t  

  Since ( , )t h t  depends on t, t
S  is not stationary. However, 1t t t

Z X X  is 

stationary. 

 

0,0

0,1

k

k
k 0,0

0,1

k

k
kk
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3. Linear Process 

 Let { }
t

Z  be a WN process with mean 0 and variance 2 . { }
t

X  is a Linear process if 

1 1 2 2

1

....
t t t t i t i

i

tX Z Z Z Z Z having 

2

2

[ ] 0; [ ]

1 00
( ) ; ( )

0 00 0

t t Z

Z

E X Var X

hh
h h

hh

  

and 
1i

i
 as the stationarity condition. 

4.Moving Average Process MA(q) 

 

Let { }
t

Z  be a WN process with mean 0 and variance 2 . { }
t

X  is a Moving Average of 

order q if 0 1 1

0

q

t t t q t q i t i

i

X Z Z Z Z where { }
i  are the constants and 

usually 0
1 . 

 

For q=1, MA(1) is 1t t tX Z Z  

Then 
2 2

( ) 0; ( ) (1 )
t t

E X V X  

    

2 2

2

(1 ) 0

( , ) 1

0 1

x

h

t h t h

h

;     2

1
0

( ) 1
1

1
0

x

h

h h

h

 

i. MA(q) process is second-order stationary for all values of { }
i . 

ii. If t
Z ’s are Normally distributed, so are the 

t
X ’s  Normal Process  Strictly 

stationary. 
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Example: 

 

Figure 4.2. An example to MA process 

 

5. Autoregressive Process: AR(p) 

Let { }
t

X  is a stationary series and { }
t

Z  is a White Noise with mean 0 and variance 2 . 

{ }
t

X  is said to be AR(p) if  

1 1 2 2
0, 1, ; 1

t t t p t p t i
X X X X Z t where  

AR(1) Process 

1t t t
X X Z  with 

2

12
( ) 0, ( ) 1

1
t t

E X and V X  

 

Proof: AR(p) can be expressed in terms of MA(∞) by successive substitution. 

 

Take p=1 

   
2 2

1 2 1 2 1 3 2 1

2 3

1 2 3

[ ] [ ]

1

t t t t t t t t t t t t t

t t t t t

X X Z X Z Z X Z Z X Z X Z

X Z Z Z Z iff
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2 3

1 2 3

2 3 2 2 4

1 2 3

2

2

0

( ) [ ] 0

( ) [ ] [1 ]

1
( ) 1

1 1

t t t t t

t t t t t

i

t

i

E X E Z Z Z Z

V X V Z Z Z Z

V X where r if r
r

 

Example: AR(2) process 

 

2

1 1 2 2
~ (0, )

t t t t t
X X X Z Z WN  

Example:  

 

Figure 4.3 An example to AR(1) process 

 

Yule Walker Equations 

 

The recursive computation of the autocorrelation function of an AR(p) model satisfying the 

stationary condition. 

 

Consider AR(p) process 

t

p

j

jtjt ZXX
1

 where ),0( 2WNZ t  satisfying the stationary conditions. The 

autocorrelation function of AR(p) satisfies for any h: 
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p

j

j

p

j

j

jhh

sjhh

1

1

)()(

)()()(

 

Proof is straightforward by taking the expectation of AR(p) process is multiplied both sides 

of the equation by Xt+h . 

 

These equations can be expressed as  

pp

p

p .

.

1)1(

........

1)2(

1)1(

)1(......)2()1(1

)(.

.

)3(

)2(

)1(

3

2

1

 

Replacing the parameters by empirical estimators 

RΦρ

pp

p

p .

.

1)1(ˆ

........

1)2(ˆ

1)1(ˆ

)1(ˆ......)2(ˆ)1(ˆ1

)(ˆ.

.

)3(ˆ

)2(ˆ

)1(ˆ

3

2

1

 

ρRΦ
1ˆ

)(ˆ.

.

)3(ˆ

)2(ˆ

)1(ˆ

1)1(ˆ

........

1)2(ˆ

1)1(ˆ

)1(ˆ......)2(ˆ)1(ˆ1

ˆ.

.

ˆ

ˆ

ˆ 1

3

2

1

pp

p

p

 

 

Asymptotic distribution of Yule-Walker estimators 

 

For a causal AR(p) process, the asymptotic distribution of 

2 1 2 2ˆ ˆ( ) (0, ) as  d pn N R  

Partial autocorrelation Function (PACF) 

 

Correlogram is useful for identifying a pure moving average model, since there will tend to 

be cut-off significant points on the correlogram after appropriate lag depth. For 

autoregressive or mixed processes, the order of the autoregressive component may be 

harder to determine from the correlogram. For this reason, it is usual to use a 

complementary procedure which involves plotting the estimated coefficient of Xt-k, from 
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an Least Square estimate of an AR(p) model. If the observations are generated by an AR(p) 

process, then the theoretical partial autocorrelations are zero at lags beyond p. Since any 

invertible MA process can be represented as an AR process with geometrically decreasing 

coefficients, the partial autocorrelation function for an MA process should decay slowly. 

The identification of a mixed model may be more difficult to determine. 

 

Under the assumption of normality the partial correlation of X and Y conditional on W is  

 

, , 1 1
2 2 2 22 2

[( ( | ))( ( | ))]

{ [( ( | )) ] [( ( | )) ]} [(1 )(1 )]

xy xw yw

x y w

xw yw

E X E X W Y E Y W

E X E X W E Y E Y W
 

For an AR(p) process PAC, hh  is the correlation coefficient between t
X  and t h

X  

controlling the effect of 1t h
X  

1 (1) ( 2) (1)

(1) 1 ( 3) (2)

( 1) ( 2) (1) ( )

1 (1) ( 1)

(1) 1 ( 2)

(1)

( 1) (1) ( )

hh

h

h

h h h

h

h

h h

 

 

Equivalently, Levinson and Durbin’s Recursive Formula gives 

1

1,

1

1

1,

1

1 1,

( )

1,2,3,

1

1,2, , 1

h

h j h j

j

hh h

h j j

j

hj h hh h h j

h

h

j h

 

 

Example: For an AR(2) process find the partial autocorrelation function. 

 

1 1 2 2
~ (0, )

t t t t t
X X X Z Z WN  
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2

11 22 2

(2) (1)
(1); ; ; 0

1 (1)
pp p hh h p  

 

Partial Autocorrelation for MA(1) process 

2

2( 1)

2 2 2 3 2

11 22 334 6 8

(1 )
0

1

(1 ) (1 ) (1 )

1 1 1

h

hh h
for h

 

 

Asymptotic distribution of Partial Autocorrelations 

 

For a causal AR(p) process, the asymptotic distribution of 

)1,0(ˆ Nn d

kk  

6. Combined Autoregressive Moving Average (ARMA) processes 

2

1 1 2 2 1 1

~ (0, )
t

t t t p t p t t q t q

Z WN

X X X Z X ZX
 

ARMA(1,1) process 

1 1( )t t t tX X Z Z  

Properties of the ACF and PACF for various ARMA Models 

 

Model ACF PACF 

AR(1) Exponential or oscillatory decay 
hh =0 for h>1 

AR(2) Exponential or sine wave decay 
hh =0 for h>2 

AR(p) Exponential or sine wave decay 
hh =0 for h>p 

MA(1) 
0h =0 for h>1 

Dominated by damped exponential 

MA(2) 
0h =0 for h>2 

Dominated by damped exponential or 

sine wave 

MA(q) 
0h =0 for h>q 

Dominated by linear combination of 

damped exponential and/or sine waves 

ARMA(1,1) Tails off. Exponential decay 

from lag 1 

Tails off. Dominated by exponential 

decay from lag 1 

ARMA(p,q) Tails off after (q-p) lags. 

Exponential and/or sine wave 

decay after (q-p) lags 

Tails off after (p-q) lags. Dominated 

by damped exponentials and or sine 

waves after (p-q) lags 
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Backward Shift Operator, B: 

· 1tt XBX  

· 21)( ttt XBXBXB  

  2

2

tt XXB  

· jtt

j XXB  0j  10B  

Example:  

Random Walk process can be expressed as 

 

 

 

Example: 

 

The following series contain some part of the 159 observations on the monthly differences 

between the yield mortgages and the yield on government loans in Netherlands From Jan. 

1961 to Dec. 1973 

 

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

1961 0.66 0.70 0.74 0.63 0.70 0.66 0.61 0.52 0.60 0.61 0.7 1.1 

1962 1.17 1.23 0.85 0.78 0.71 0.55 0.56 0.74 0.80 0.75 0.74 0.79 

1963 0.78 1 1.05 1.09 1.05 0.75 0.73 0.77 0.77 0.84 0.66 0.68 

……             

0,00

0,50

1,00

1,50

2,00

months

Yield Mortgages-Yield on Gov. Loan Monthly)

 

Figure 4.4 Plot of the series 

 

Sample Average 
0.66 0.70 0.74 ...

0.993
159

x  

The Variance is 

ttttttttttt eYBeBYYeYYeYY 111
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2 2 2(0.66 0.993) (0.70 0.993) (0.74 0.993) ....
ˆ(0) ( , ) ( ) 0.085

158
t t tCov X X Var X

 

Correlation coefficient for lag h 

 

h=1 

1 1

2 2

ˆ ˆ( , ) ( , ) (1) (0.66 0.993)(0.70 0.993) (0.74 0.993)(0.63 0.993) ....
ˆ (1) 0.84

ˆ ˆ( ) ( , ) (0) (0.66 0.993) (0.70 0.9) ...

t t t t

t t t

Cov X X X X

Var X X X

h=2 

2 2

ˆ(2) (0.66 0.993)(0.74 0.993) (0.70 0.993)(0.63 0.993) ....
ˆ (2) 0.6

ˆ(0) (0.66 0.993) (0.70 0.9) ...
 

h=3 

2 2

ˆ(3) (0.66 0.993)(0.63 0.993) (0.70 0.993)(0.70 0.993) ....
ˆ (3) 0.584

ˆ(0) (0.66 0.993) (0.70 0.9) ...
 

 

Autocorrelation and partial auticorrelation Functions  for lag h=1,2,3,…,20 

ACF 

h 1 2 3 4 5 6 7 8 9 10 

ρ 0.841 0.683 0.584 0.515 0.457 0.427 0.405 0.386 0.361 0.321 

h 11 12 13 14 15 16 17 18 19 20 

ρ 0.329 0.338 0.337 0.294 0.231 0.166 0.126 0.062 0.047 0.042 

PACF 

h 1 2 3 4 5 6 7 8 9 10 

φ 0.841 -0.083 0.111 0.036 0.018 0.091 0.025 0.035 0.003 -0.044 

h 11 12 13 14 15 16 17 18 19 20 

φ 0.168 0.001 0.027 -0.110 -0.08 -0.057 0.007 -0.152 0.122 -0.071 
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0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

h

ACF

lag

 

-0,40

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PACF

 
Figure 4.5 Plots of the ACF and PACF values 

 

 

 

Dependent Variable: YIELD_DATA  

Method: Least Squares   

Date: 01/21/08   Time: 00:14   

Sample (adjusted): 2 158   

Included observations: 157 after adjustments  

Convergence achieved after 3 iterations  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 1.003013 0.079014 12.69410 0.0000 

AR(1) 0.841074 0.042868 19.62019 0.0000 

     
     R-squared 0.712937     Mean dependent var 0.994586 

Adjusted R-squared 0.711085     S.D. dependent var 0.292556 

S.E. of regression 0.157251     Akaike info criterion -0.849287 

Sum squared resid 3.832832     Schwarz criterion -0.810354 

Log likelihood 68.66904     F-statistic 384.9517 

Durbin-Watson stat 1.860085     Prob(F-statistic) 0.000000 
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4.3 Stationary Conditions: 

Invertibility: 

Consider a MA(q ) process. 

0 1 1

2

1 2(1 .. )

( )

t t t q t q

q

q t

t t

X Z Z Z B B B Z

X B Z
  

The model can be written in infinite order autoregressive form with drift 

1 1 2 2

1 1

.. ;  
t t t t i t i

i

t j

j

X Z X X X Z  

We can express the series as  

 

( ) ( ) ( ) 1
t tB X BZ B  

The series is stationary if the the roots of ( ) 0B lies outside of the unit circle, i.e. 0B . 

This condition is satisfied when 0; 1,..,i i q . The process is invertible if the coefficients of the 

MA(q) lie within the unit circle. 

 

Causality: Characteristic equation 

Consider AR(p) process given as  

1 1 2 2

1 1 2 2

1 2

2(1 )

( )

t t t p t p t

t t p t p

p

t t

p

t t

t t

X X X X Z

X X X X Z

B B B X Z

B X Z

 

Expressing the series as an infinite order MA process yields 

 

1 1 2 2 1 2

2
(1 ) ( )

( ) ( ) 1

t t t t t tX Z Z ZZ B B B Z

B B
 

( ) 0B  is called the characteristic equation of the series. To ensure the stationary 

condition, the roost of the characteristic equation should lie outside the unit circle. 
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4.4. Estimation 

Consider AR(1) process having drift 

ttt ZXX )( 1  where ),0(,,1 2NZt , given tx , t=1,2,..n, the 

likelihood function  

)()...()(),,( 12121 nxxfxxfxfL  

As )),(( 2

112 tXNXX , ))()(()( 11 ttZtt xxfxxf and  

)
1

,(
2

2

1 NX  

Then the likelihood is  

2

2
1

2
2

2

2

11

2

2

),(
exp)1(2

))()(()(),,(

S

xxfxfL

n

n

t

ttZ

 

2

2

1

2

1

2 )()())(1(),(
t

tt XXxS  Unconditional sum of squares 

n

SL

Snn
L

)ˆ,ˆ(
ˆ0

),,(ln

2

),(
)1(

2

1
2ln

2
ln

2
),,(ln

2

2

2

2

222

 

 

AR models are linear models conditional on initial values. Therefore, dropping the term in 

the likelihood that causes non-linearity, the “Conditional Likelihood” is found. 

 

2

2
1

2
2

1
2

2

11

2

2

),(
exp)1(2

))()((),,(

C
n

n

t

ttZ

S

xxfxL

 

2

2

1 )()(),(
t

tt XXS  Conditional sum of squares 

1

)ˆ,ˆ(
ˆ0

),,(ln 2

2

2

n

SL
 

 

Estimates of µ and  are: 
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Let )1(
n

t

ttC XXS
2

2

1)(),( . By LSE technique  

n

t

t

n

t

t

n

t

t

n

t

tt
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n

X
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Maximum Likelihood of MA(1) Process 

 

Given  1)( ttt ZXZ  

2

2
1

)1(2

2

2
22

2

),(
exp)

1

1
(2),,(

S
L

n

n

 

 

Maximum Likelihood of ARMA(1,1) Process 

Given  11 tttt ZXXZ  

2
2

1
2

22

2

),(
exp2),,(

S
ZZL

n

 

)1)(1(

))(1()1)(1(
22

2222 n

ZZ  

 

Example 

Consider a stationary MA(1) model with zero mean given below. Derive the likelihood 

function and obtain the unconditional least squares estimates of the parameters. 

...),,0(; 2

1 diiNZZZX tttt  Given t=1,2 
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Exercises 

1. Consider the model 2 1t t t tX X Z Z   where 
tZ WN  

a. Is the model stationary? Invertible? State the conditions for stationarity of this model. 

b. Write the model interms of a linear process, specify 1, 2, 3 in terms of ( , ) 

c. For =0.2, what constant should be added to the right hand side of the model so that 

E(Xt)=5? 

d. Suppose E(Zt)=1. What would be E(Xt)) in terms of ( , )  

2. Consider the following model with 
2
=1.44. 

1 20.4 0.2t t t tX X X Z ;       
tZ WN  

a. Find 1 2 3, ,  

b. 11, 22, 33 and (0) 

3. Consider the model 

1 2t t t tX X X Z  

a. For what values of  is the model stationary? 

b. Find ρ(1) in terms of . 

c. Find ψ1, ψ2, ψ3, ψ4.  

4.  Consider the model 

2 3t t t tX X Z Z  

Assuming the model is stationary, find γ(0), ρ(1), ρ(2), 22. 

5. Let {Zt} be zero-mean white noise. Find the autocorrelation function for the 

following two processes: 

a. 1

1

3
t t tX Z Z  

b. 13t t tX Z Z  

c. You should have discovered that both series are stationary and have the same 

autocorrelation functions. Do you think that these models could be distinguished  on 

the basis of observations of Zt. 

6. Suppose 5 2t tX t Z  where {Zt} is a  zero-mean stationary series with 

autocovariance function (h). 

a. Find the mean function for {Xt} 

b. Find the autocovariance function for {Xt} 

c. Is {Xt} stationary? (Why or why not) 
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7. Suppose 0 1t tX t Z  where {Zt} is stationary. Show that {Xt} is not 

stationary but that Xt=Xt-Xt-1 is stationary. 

 

8. Calculate V(Xt) in terms of 
2

 for the following stochastic process 

 
2 3

1 2 30.4 (0.4) (0.4) ...t t t t tX Z Z Z Z  

9. Find 1, 2, 3 for the following models  

a. (1-0.8B)(Xt- )=Zt 

b. Xt=0.8Xt-1-0.1Xt-2+Zt 

c. Find (1), (2) and (3) for models (a) and (b). 

 

10.Determine which of the models to be chosen to model the series. 

Model 1 

Dependent Variable: SERIES01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.842172 0.075479 11.15765 0.0000 

MA(1) -0.302824 0.133818 -2.262957 0.0259 

     
     R-squared 0.493503     Mean dependent var -0.174202 

Adjusted R-squared 0.488282     S.D. dependent var 1.638134 

S.E. of regression 1.171830     Akaike info criterion 3.175006 

Sum squared resid 133.1991     Schwarz criterion 3.227433 

Log likelihood -155.1628     Durbin-Watson stat 1.966866 

     
     Inverted AR Roots       .84   

Inverted MA Roots       .30   

     
     

 

Model 2 

Dependent Variable: SERIES01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.692724 0.073036 9.484638 0.0000 

     
     R-squared 0.472652     Mean dependent var -0.174202 

Adjusted R-squared 0.472652     S.D. dependent var 1.638134 

S.E. of regression 1.189592     Akaike info criterion 3.195148 

Sum squared resid 138.6827     Schwarz criterion 3.221361 

Log likelihood -157.1598     Durbin-Watson stat 2.221013 

     
     Inverted AR Roots       .69   
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10. Write the order of the process based on the ACF and PACF plots below. 

 

11. Determine which of the coefficients to be chosen to model the series. 

Model 1 

Dependent Variable: SERIES01   

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.961179 0.436832 2.200340 0.0302 

AR(2) -0.090880 0.329854 -0.275515 0.7835 

MA(1) -0.412044 0.414466 -0.994155 0.3227 

     
     R-squared 0.495243     Mean dependent var -0.175980 

Adjusted R-squared 0.484616     S.D. dependent var 1.646460 

S.E. of regression 1.181997     Akaike info criterion 3.202423 

Sum squared resid 132.7262     Schwarz criterion 3.281554 

Log likelihood -153.9187     Durbin-Watson stat 1.965834 

     
     Inverted AR Roots       .85           .11  

Inverted MA Roots       .41   

     
     

 

Model 2 

Dependent Variable: SERIES01   

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
AR(1) 0.854304 0.086835 9.838303 0.0000 

MA(1) -0.294178 0.135943 -2.163984 0.0329 

MA(2) -0.048162 0.121424 -0.396641 0.6925 

     
R-squared 0.494160     Mean dependent var -0.174202 

Adjusted R-squared 0.483622     S.D. dependent var 1.638134 

S.E. of regression 1.177154     Akaike info criterion 3.193911 

Sum squared resid 133.0264     Schwarz criterion 3.272551 

Log likelihood -155.0986     Durbin-Watson stat 1.997229 

     
Inverted AR Roots       .85   

Inverted MA Roots       .41          -.12  
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12. Write the estimated models for the following series. 

 

Series 1 

 

Dependent Variable: SERIES01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -78.16783 501.0114 -0.156020 0.8760 

AR(1) 1.610020 0.008702 185.0209 0.0000 

AR(2) -0.616464 0.008702 -70.84448 0.0000 

     
     R-squared 0.995075     Mean dependent var -58.50484 

Adjusted R-squared 0.995074     S.D. dependent var 4162.713 

S.E. of regression 292.1641     Akaike info criterion 14.19287 

Sum squared resid 6.99E+08     Schwarz criterion 14.19544 

Log likelihood -58116.82     F-statistic 827096.1 

Durbin-Watson stat 2.208966     Prob(F-statistic) 0.000000 

     
     Inverted AR Roots       .98           .63  

     
     

 

 

 

 

Series 2 

 

Dependent Variable: Difference(SERIES01)  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.774125 0.010924 70.86718 0.0000 

MA(1) -0.265242 0.016638 -15.94151 0.0000 

     
     R-squared 0.392578     Mean dependent var -0.305861 

Adjusted R-squared 0.392504     S.D. dependent var 371.3930 

S.E. of regression 289.4713     Akaike info criterion 14.17423 

Sum squared resid 6.86E+08     Schwarz criterion 14.17595 

Log likelihood -58041.49     Durbin-Watson stat 1.997692 

     
     Inverted AR Roots       .77   

Inverted MA Roots       .27   
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Series 3 

 

Dependent Variable: SERIES01   

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(2) 0.988475 0.001648 599.7436 0.0000 

MA(1) 0.120766 0.010562 106.1123 0.0000 

MA(3) -0.122652 0.010562 -11.61255 0.0000 

     
     R-squared 0.992215     Mean dependent var -58.50484 

Adjusted R-squared 0.992213     S.D. dependent var 4162.713 

S.E. of regression 367.3250     Akaike info criterion 14.65074 

Sum squared resid 1.10E+09     Schwarz criterion 14.65331 

Log likelihood -59991.77     Durbin-Watson stat 0.892310 

     
     Inverted AR Roots       .99          -.99  

Inverted MA Roots       .29          -.42        -1.00 

     
     

 

 

 

 

Series 4 

Dependent Variable: SERIES01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.823213 0.013572 134.3349 0.0000 

AR(2) -0.828464 0.013416 -61.75404 0.0000 

MA(1) -0.334644 0.018897 -17.70896 0.0000 

MA(3) -0.078778 0.013710 -5.746101 0.0000 

MA(4) 0.025864 0.012300 2.102713 0.0355 

     
     R-squared 0.995252     Mean dependent var -58.50484 

Adjusted R-squared 0.995250     S.D. dependent var 4162.713 

S.E. of regression 286.8942     Akaike info criterion 14.15671 

Sum squared resid 6.74E+08     Schwarz criterion 14.16099 

Log likelihood -57966.74     Durbin-Watson stat 1.986695 

     
     Inverted AR Roots       .96           .86  

Inverted MA Roots       .44           .32   -.21-.37i -.21+.37i 
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Chapter 5 

Forecasting 

 

Consider the process tt ZBXB )()(  , ),0( 2WNZ t  

Aim is to predict Xn+l, where l is the forecast horizon, with minimum mean squared error. 

Define the function  

11210 .. XXXXP nnnlnn  which predicts Xn+l with minimum mean squared 

error. Then, 
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Therefore, the mean square prediction error is 
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)(lX n  provides a good approximation to lnn XP . Hence,  
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lnX  can be written in its causal and invertible forms: 
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Then  
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Note that  

otherwise zero;0for..| 11 jZXXXZE jnnnjn . 

 

The error in the forecast )(len is: 
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The Mean Square Prediction Error is 
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The auto-covariance among the prediction errors is 
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Example: Given AR(1) process with drift µ, predict lnX . 
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. 

 

For l=k 
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Prediction Error and its variance 

For l=1 
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(1-α)x100% Prediction Limits 
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 For a 95% confidence interval for the prediction we take zα/2 rounded to 2. 
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5.1. Forecast Updating 

As the new observations become available, the forecasts have to be updated. Suppose we 

are at time n and predicting (l+1) steps ahead. Then  

.....|)1( 23121111 nlnlnlnnlnn ZZZXXXXElX  

After (n+1)
st
 observation become available, we update the prediction of 1lnX  as 

)1()1()(

)1(...)(

11

112111

lXXXlX

lXZZZZlX

nnnln

nnlnlnlnln
 

Out of Sample Forecasts 

To assess the forecasting performance of two proposed models, a holdback period of k is 

forecasted. The efficiency of the forecast for each model is performed based on the 

comparison of the Mean Square Prediction errors of those out of sample forecasts. 

 

Example Yield data example. Forecast the series for 3,2,1l  periods starting if  

n=156. 

003.1;49.0156X  

 

Dependent Variable: YIELD_DATA  

Method: Least Squares   

Date: 01/21/08   Time: 00:14   

Sample (adjusted): 2 158   

Included observations: 157 after adjustments  

Convergence achieved after 3 iterations  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 1.003013 0.079014 12.69410 0.0000 

AR(1) 0.841074 0.042868 19.62019 0.0000 

     
     R-squared 0.712937     Mean dependent var 0.994586 

Adjusted R-squared 0.711085     S.D. dependent var 0.292556 

S.E. of regression 0.157251     Akaike info criterion -0.849287 

Sum squared resid 3.832832     Schwarz criterion -0.810354 

Log likelihood 68.66904     F-statistic 384.9517 

Durbin-Watson stat 1.860085     Prob(F-statistic) 0.000000 
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Suppose that 7.0157X  is observed. The Prediction updates are 

for  l=1   77.062.0)56.074.0(85.0)2(ˆ)1(ˆ)1(ˆ
15615615711 XXXXn

 

for  l=2   81.068.0)56.074.0(85.0)3(ˆ)1(ˆ)2(ˆ
15615615711 XXXX n  

 

 

5.2. Efficiency of Forecasting 

 

One method of evaluating a forecasting technique uses the summation of the absolute errors. 

The mean absolute deviation (MAD) measure forecast accuracy by averaging the 

magnitudes of the forecast errors (absolute values of each error). 
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The mean square prediction error (MSPE) is an alternative method for evaluating a 

forecasting technique. This approach provides a penalty for large forecasting errors as it 

squares each. 
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Mean absolute percentage error (MAPE) expresses errors in terms of percentages. This 

approach is useful when the size or the magnitude of the forecast variable is important in 

evaluating the accuracy of the forecast. MAPE provides and indication of how large the 

forecast errors are in comparison to the actual values in the series.. MAPE can also be used 

to compare the accuracy of the same different techniques on two entirely different series. 

 

Sometimes it is necessary to determine whether a forecasting methods is biased  

(consistently forecasting low or high). The mean percentage error (MPE) is used in these 

cases. If the forecasting approach is unbiased MPE produce a percentage that is close to 

zero. If the result is a large negative percentage, the forecasting method is consistently 
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overestimating. If the result is a large positive percentage, the forecasting method is 

consistently underestimating. 

 

Example: Suppose for the Yield data analyzed previously the following statistics calculated 

from residuals 

MAD=1.3,   MSPE= 13.5,   MAPE=6.95%, MPE=2.03%, 

 

MAD indicates that each forecast deviated by an average of 1.3 amount. The MSE and 

MAPE would be compared to the MSE and MAPE of an alternative model. The one which 

yields the minimum would be preferred model. Finally, the small MPE 2.03% indicates that 

the technique is not biased.  

 

To determine statistically if the MSPE of two models are different from the other, we use 

the statistic 

nnn
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   with the assumptions  

i. The forecast errors have zero mean and are normally distributed 

ii. The forecast errors are serially uncorrelated 

iii. The forecast errors are contemporaneously uncorrelated with each other 

 

These assumptions may not be realized for the series as the multi-step forecasts produce 

serially correlated values. This leads the assumption on the distribution of the proportion of 

sum squared errors fails. 

In order to overcome the contemporaneously correlated forecast errors, Granger-Newbold 

Test is used. 

 

The Granger-Newbold Test: The null hypothesis claims that the forecast accuracy of 

linear combinations of the residuals are uncorrelated. 

Let ttt eeY 21  and ttt eeW 21  and 
2

2

2

1 ttYW eeE  

The model 1 has larger MSPE if YW  is positive and model 2 has a larger MSPE 

otherwise. Given the sample correlation coefficient YW
ˆ , 

 1
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n
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n
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Let )()( 21 iii egegd , g).= being any function of the residuals and 
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Theil`s Inequality Coefficient (TIC) 

 

Variation in forecast lies between zero and one. A value of TIC being zero indicates a 

perfect fit. TIC and MAPE are scale invariant statistics. 

Variation in the forecast can be decomposed into three parts: Bias, Variance and Covariance 

whose proportions relative to the variance sums up to one. 

The bias proportion tells us how far the mean of the forecast is from the mean of the actual 

series. The variance proportion is the variation among the variances of forecast and actual 

series and covariance proportion measures the remaining unsystematic forecasting errors. 
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Example: 

6.8

7.0

7.2

7.4

7.6

7.8

8.0

1990 1991 1992 1993 1994 1995 1996

HSF ± 2 S.E.

Forecast: HSF
Actual: HS
Forecast sample: 1990M02 1996M12
Included observations: 72

Root Mean Squared Error 0.318700
Mean Absolute Error      0.297261
Mean Abs. Percent Error 4.205889
Theil Inequality Coefficient  0.021917
     Bias Proportion         0.869982
     Variance Proportion  0.082804
     Covariance Proportion  0.047214

 

 

 

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

1960 1965 1970 1975 1980 1985 1990

HSF ± 2 S.E.

Forecast: HSF
Actual: HS
Forecast sample: 1959M01 1990M01
Adjusted sample: 1959M03 1990M01
Included observations: 371

Root Mean Squared Error 0.082172
Mean Absolute Error      0.062917
Mean Abs. Percent Error 0.864011
Theil Inequality Coefficient  0.005607
     Bias Proportion         0.000000
     Variance Proportion  0.037292
     Covariance Proportion  0.962708
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Example: The series contains the logarithm of monthly housing starts (HS) over the period 

1959M01-1996M01, logarithm of the S&P index (SP) from 1959M01-1996M12. 

Estimation:  HS on C, SP, lag of HS with an AR (1) using data from 1959M01-1990M01 

 

Dependent Variable: HS   

Method: Least Squares   

Date: 10/19/97   Time: 21:59   

Sample(adjusted): 1959:03 1990:01  

Included observations: 371 after adjusting endpoints 

Convergence achieved after 4 iterations  

     
      Coefficient Std. Error t-Statistic Prob.   

     
     C 0.321924 0.117278 2.744975 0.0063 

HS(-1) 0.952653 0.016218 58.74157 0.0000 

SP 0.005222 0.007588 0.688249 0.4917 

AR(1) -0.271254 0.052114 -5.205027 0.0000 

     
     R-squared 0.861373     Mean dependent var 7.324051 

Adjusted R-squared 0.860240     S.D. dependent var 0.220996 

S.E. of regression 0.082618     Akaike info criterion -2.138453 

Sum squared resid 2.505050     Schwarz criterion -2.096230 

Log likelihood 400.6830     Hannan-Quinn criter. 2.013460 

F-statistic 0.000000    

     
     Inverted AR Roots      -.27   

     
     

 

 

The fitted model is 

 

HS = 0.321923974124 + 0.952652670606*HS(-1) + 0.00522248778209*SP + 

[AR(1)=-0.271254015478] 

 

1. Dynamic forecast: dynamic, multi-step forecasts starting from the 1
st
 period in the 

forecast sample. Previously forecasted values for the lagged dependent variables are 

used in forming forecasts of the current value. This choice will only be available 

when the estimated equation contains dynamic components, e.g. lagged dependent 

variables or ARMA terms. 

 

For the example we estimate the equation using data from 1959:01 to 1990:01.  

In sample dynamic forecast: from 1959:01 to 1990:01 
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6.8

7.0

7.2

7.4

7.6

7.8

8.0

1960 1965 1970 1975 1980 1985 1990

HSF ± 2 S.E.

Forecast: HSF
Actual: HS
Forecast sample: 1959M01 1990M01
Adjusted sample: 1959M03 1990M01
Included observations: 371

Root Mean Squared Error 0.221735
Mean Absolute Error      0.170050
Mean Abs. Percent Error 2.328604
Theil Inequality Coefficient  0.015141
     Bias Proportion         0.000848
     Variance Proportion  0.678102
     Covariance Proportion  0.321050

 

Sample adjustment: because we introduce the 1
st
 lag and AR term in the residuals, we can 

only estimate from 1959M03. The loss of 2 observations occurs because the residual loses 

one observation due to the lagged endogenous variable so that the forecast for the error 

term can begin only from the 3
rd

 observation. 
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2. Out of sample dynamic forecast: from 1990:02 to 1996:12 

6.8

7.0

7.2

7.4

7.6

7.8

8.0

1990 1991 1992 1993 1994 1995 1996

HSF ± 2 S.E.

Forecast: HSF
Actual: HS
Forecast sample: 1990M02 1996M12
Included observations: 72

Root Mean Squared Error 0.318700
Mean Absolute Error      0.297261
Mean Abs. Percent Error 4.205889
Theil Inequality Coefficient  0.021917
     Bias Proportion         0.869982
     Variance Proportion  0.082804
     Covariance Proportion  0.047214
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3. Static forecast: one-step-ahead forecasts, using the actual, rather than forecasted 

values for lagged dependent variables. 

 

3.1 In sample static forecast: 

6.4

6.6
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7.2

7.4

7.6

7.8

8.0

1960 1965 1970 1975 1980 1985 1990

HSF ± 2 S.E.

Forecast: HSF
Actual: HS
Forecast sample: 1959M01 1990M01
Adjusted sample: 1959M03 1990M01
Included observations: 371

Root Mean Squared Error 0.082172
Mean Absolute Error      0.062917
Mean Abs. Percent Error 0.864011
Theil Inequality Coefficient  0.005607
     Bias Proportion         0.000000
     Variance Proportion  0.037292
     Covariance Proportion  0.962708
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HS HSF

 

The one-step ahead static forecasts are more accurate than the dynamic forecasts since the 

actual value of the lagged dependent variable is used in forming the forecast of HS. These 

one-step ahead static forecasts are the same forecasts used in the Actual, Fitted, 

Residual Graph displayed for the equation estimation below, i.e. the fitted value by 

estimation. 
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3.2. Out of sample static forecast: 

6.6

6.8
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7.2

7.4

7.6

1990 1991 1992 1993 1994 1995

HSF ± 2 S.E.

Forecast: HSF
Actual: HS
Forecast sample: 1990M02 1996M12
Adjusted sample: 1990M02 1996M02
Included observations: 72

Root Mean Squared Error 0.070691
Mean Absolute Error      0.051155
Mean Abs. Percent Error 0.723547
Theil Inequality Coefficient  0.004955
     Bias Proportion         0.091461
     Variance Proportion  0.022643
     Covariance Proportion  0.885896
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Sample adjustment: For static forecast, we are responsible for the supply of the actual value 

for the lagged dependent variables. Since we only have data for HS until 1996M01, we can 

only do static forecast until 1996M02. 

 

Exercises 

 

1. Consider the model 1 1 2 2 1t t t t tX X X Z Z ;  
tZ WN  

a. Obtain the l-step forecasts, l=1,2 recursively  

b. Obtain the forecast errors en(l), l=1,2 and find their variances.  

 

2. For the stationary and invertible ARMA(2,2) model with zero mean,  

a. Obtain recursively a. the first three forecasts  

b. The forecast errors and their variances  



77 

 

 

Chapter 6 

Model Selection and Non-Stationary Time Series Model 

 

Determination of the best suitable model for given observed series and choosing the 

appropriate model on order of p and q are very important as the forecasting and prediction 

will rely on the model chosen. ACF and PACF show specific properties for specific models. 

Hence, they can be used as a criteria to identify the suitable model. With messy data sample 

ACF and PACF plots become complicated and harder to interpret. The ideal is to choose 

the model having few parameters as possible. It will be seen that many different models can 

fit to the same data so that we should choose the most appropriate one. Box Jenkins 

approach gives a systematic algorithm to determine the best model. 

 

6.1. The Box-Jenkins Approach 

 

Box and Jenkins (1976) suggest a three-stage approach to pure time series modeling. These 

are identification, estimation and diagnostic checking.  

 

At the identification stage, a tentative ARIMA model is specified that may approximate the 

data generating process for the given sample, through examination of the correlogram and 

the partial autocorrelation functions. Once a model has been tentatively identified, the next 

stage is to estimate its parameters. Once the tentative model has been estimated, a set of 

estimated residuals are automatically generated. 

For example for an AR(1) model the estimated residuals are 
1

ˆ
t t tZ X X . If the fitted 

model is correct, then this residual series should be approximately white noise. One the test 

of adequacy of the model thus includes testing for the whiteness of the fitted residuals using 

diagnostic checks such as the Box-Pierce or Ljung-Box portmanteau statistics. 

 

If the estimated parameters of the fitted model are significantly different from zero and the 

fitted residuals appear to be approximate white noise, then the fitted model may be held to 

be adequate. If the model fails on either of these counts, then the identification stage should 

be returned to. 

 

6.2. Testing the Dynamic Modeling (Diagnostic Checking) 

 

1. Residual Analysis: As described above, residuals should have a random pattern and 

be modeled as white noise. If the Normal P-P plot of the residuals follow a normal 

distribution, the series is called a Gaussian process.  

2. Overfitting : Having identified  what is believed to be the correct model, we actually 

fit a more elaborate one. To conclude which model explains the series better we 

Akaike’s Information Criterion (AIC) and Schwarz’s Information Criterion (SIC) are 

compared for each model. The model having smaller value of AIC or SIC proposes a 

better fit. 
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Akaike’s Information Criterion is 

2 2
ˆln k

n k
AIC

n
 

where 
2ˆ
k  is the sample variance, k is the number of the parameters in the models and n is 

the number of observations. The value of k yielding the minimum AIC specifies the best 

model. Corrected AIC (AICc) is a modified AIC for eliminating the bias. 

2ˆln
2

k

n k
AICc

n k
 

 

Schwarz’s Information Criterion (SIC) (Bayesian Information Criterion (BIC)) 

2 ln
ˆln k

k n
SIC

n
 

SIC does well getting the correct order in large samples, whereas AIC tends to be 

superior in small samples where the relative number of parameters is large. 

 

6.3. Non-Stationary Processes 

 

Many time series like stock prices behave as through they have no fixed mean. Even so, 

they exhibit homogeneity in the sense that apart from local level and/or trend, one part of 

the series behave like any other part. Models that describe such homogeneous nonstationary 

behavior can be obtained by supposing some suitable difference of the process to be 

stationary. These models are called Autoregressive Integrated Moving Average (ARIMA) 

processes. 

 

Differencing operator, : 

  

1

2

2

1 1 1 2

2 2

1 2

(1 )

( )

( ) ( ) ( )

( 2 ) (1 2 ) (1 )

(1 )

t t t t

t t t t

t t t t t t

t t t t t

d d

t t

X X X B X

X X X X

X X X X X X

X X X B B X B X

For d differencing

X B X

 

 

Integrated Models 

Definition: 
t t N

X  is said to be ARIMA(p,d,q) if  (1 )d d

t tX B X  is ARMA(p,q). 

In another words, ( )(1 ) ( )d

t tB B X B Z  

Then ARIMA(p,d,q) is an ARMA(p,q) series differenced d times. 
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ARIMA(1,1,1) 

1 1 2 1

2

1

2

1

1

( )

(1 ) ( )

((1 ) ( ))

(1 )(1 )

t t t t t t

t t t t

t t t

t t t

X X X X Z Z

B X B B X Z Z

B B B X Z Z

B B X Z Z

 

 

ARIMA (p,d,q) 

2

1 2

0

(1 ... )(1 )
q

p d

p t i t i

i

B B B B X Z  

Example:  

 

 

Figure 6.1. A series with trend on the left and the differenced data on the right  
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Example: Let 
t t N

X  be ARIMA(1,1,1). Then  

1 1 2 1

2

( ) ( )

( )(1 ) ( )

( )(1 ) (1 )

( ) (1 )

t t t t t t

t t

X X X X Z Z

B B X B Z

B B B B B

B B

 

 

ARIMA(1,1,1) in causal form: 

2 2

1 2

1 1

2

2 1 1 2 1

3

3 1 2 1 3 1 2

Let ( )

( )(1 ) ( ) ( )

(1 )(1 ...) (1 )

: 1 (1 )

: 0 (1 )

: 0 (1 )

.......

t tX B Z

B B B B

B B B B B B

B

B

B

 

ARIMA(1,1,1) in invertible form: 

 

2 2

1 2

1 1

2

2 1 2 1

3

3 2 3 2

Let ( )

( )(1 ) ( ) ( )

(1 ) (1 )(1 ...)

: 1 (1 )

:

: 0

.......

t tZ B X

B B B B

B B B B B B

B

B

B

 

 

 

Example: Find the l-step ahead forecast for an ARIMA (1,1,1) process. 

1 2 1(1 )t t t t tX X X Z Z  

 

l-step ahead forecasts: 

1 1 1 2 1 1 1, ,.. (1 ) ) , ,..n l n n n l n l n l n l n nE X X X X E X X Z Z X X X  

For l=1 
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1 1 1 1 1 1 2 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

(1) , ,.. ((1 ) ) , ,..

(1) (1 ) , ,.. , ,..

, ,.. , ,..

(1) (1 )

n n n n n n n n n n

n n n n n n n

n n n n n n

n n n n

X E X X X X E X X Z Z X X X

X E X X X X E X X X X

E Z X X X E Z X X X

X X X Z

 

For l=2 

2 1 1 2 1 2 2 2 2 1 1 1

1 1 1 1 1

2 1 1 1 1 1

(2) , ,.. ((1 ) ) , ,..

(2) (1 ) , ,.. , ,..

, ,.. , ,..

(2) (1 ) (1)

n n n n n n n n n n

n n n n n n n

n n n n n n

n n n

X E X X X X E X X Z Z X X X

X E X X X X E X X X X

E Z X X X E Z X X X

X X X

 

For l=k 

1 1( ) , ,..

( ) (1 ) ( 1) ( 2)

n n k n n

n n n

X k E X X X X

X k X k X k
 

 

Example: Given ARIMA(1,1,0) process, the model is fitted to the past 50 observations and 

it is found that ˆ ˆ0.40, 0.18 . Last two observations are 49 5033.4, 33.9X X  

a. Calculate the minimum mean squared forecasts and 95% prediction intervals for the 

next 5 periods. 

b. A new observation 51 34.2X  is observed. Update the forecasts. 

a. 1 2(1 )t t t tX X X Z  

For l=1 

1 1 1 1 1

1 1 1 1

(1) (1 ) , ,.. , ,..

, ,.. (1 )

n n n n n n n

n n n n n

X E X X X X E X X X X

E Z X X X X X
 

For l=2 

1 1 1 1 1

2 1 1

(2) (1 ) , ,.. , ,..

, ,.. (1 ) (1)

n n n n n n n

n n n n n

X E X X X X E X X X X

E Z X X X X X
 

For l=3,4,5,…. 

1 1( ) , ,..

( ) (1 ) ( 1) ( 2)

n n k n n

n n n

X k E X X X X

X k X k X k
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Estimates are:  For l=1,2,3,4,5 

ˆ (1) 1.4(33.9) 0.4(33.4) 34.1

ˆ (2) 1.4(34.1) 0.4(33.9) 34.18

ˆ (3) 1.4(34.18) 0.4(34.1) 34.212

ˆ (4) 1.4(34.212) 0.4(34.18) 34.2248

ˆ (5) 1.4(34.2248) 0.4(34.212) 34.22992

n

n

n

n

n

X

X

X

X

X

 

 

The  coefficients are 

2 2

1 2

1 1

2

2 1 1 2 1

1 2

(1 )(1 ...) 1

: 1 0 (1 )

: 0 (1 )

: (1 )k

k k k

B B B B B

B

B

B

 

1 2 3 4
ˆ ˆ0.40, 0.18 1.4, 1.56, 1.624, 1.6496  

95% prediction interval for l-step ahead forecast is: 

2 2 2

1 2 1

ˆ ( ) (1.96 ( ( )))

ˆ ˆ( ) (1.96 1 .. )

n n

n l

X l Var e l

X l
 

2

1

2 2

1 2

2 2 2

1 2 3

2 2 2 2

1 2 3 4

ˆ ˆ(1) 1.96 34.1 0.3528

ˆ ˆ(2) 1.96 1 34.18 0.6070

ˆ ˆ(3) 1.96 1 34.212 0.8193

ˆ ˆ(4) 1.96 1 34.2248 0.9998

ˆ ˆ(5) 1.96 1 34.22992 1.1568

n

n

n

n

n

X

X

X

X

X

 

b. Forecast Updates are 
1 1

ˆ ˆ ˆ( ) ( 1) (1)n n l n nX l X l X X  

51 50 1 51 50

51 50 2 51 50

51 50 3 51 50

51 50 4 51

ˆ ˆ ˆ(1) (2) (1) 34.32

ˆ ˆ ˆ(2) (3) (1) 34.368

ˆ ˆ ˆ(3) (4) (1) 34.3904

ˆ ˆ ˆ(4) (5) (1) 34.3949n

X X X X

X X X X

X X X X

X X X X
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Example:  

Based on date of quarterly U.S. GNP from 1947(1) to 2002(3) with 223 observations, the 

data represent Real U.S. Gross National Product in billions of chained 1996 dollars and 

they have been seasonally adjusted. The data were obtained from the Federal Reserve Bank 

of St. Louis. 

    

 

Figure 6.2 Plots of original series and its ACF 

 

Regarding the plot of the original data and the relative ACF, it is not clear from the upper 

graph that the variance is increasing with time because that the strong trend hides any other 

effect. 



84 

 

 

Figure 6.3. Plot of differenced data 

 

For the purpose of the demonstration, the first difference of the logged data is displayed. 

Now the trend has been removed we are able to notice that the variability in the second half 

of the data is larger than in the first half of the data. Also, it appears as though a trend is still 

present after differencing. 

 

 

Figure 6.4 ACF of differenced data 
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The sample ACF and PACF of the quarterly growth rate are plotted in the upper figure. 

Inspecting the sample ACF and PACF, we might feel that the ACF is cutting off at lag 3 and 

the PACF is tailing off. This would suggest the GNP growth rate follows an MA(3) process, 

or log GNP follows an ARIMA(0, 1,3) model. Rather than focus on one model, we will also 

suggest that it appears that the ACF is tailing off and the PACF is cutting off at lag 1. This 

suggests an AR(1) model for the growth rate, or ARIMA(1, 1, 0) for log GNP. As a 

preliminary analysis, we will fit both models.  

 

Using MLE to fit the MA (3) model for the growth rate (the first difference of log GNP), 

gnpgr, the estimated output is: 

 

Coefficients: 

         ma1     ma2     ma3   intercept 

         0.3208   0.2478  0.0909     0.0083 

s.e.      0.0662   0.0718  0.0701     0.0010 

 

The variance is estimated as 8.853e-05:  log likelihood = 720.78,  aic = -1431.55 

 

 

The estimated model MA(3)is  

ttttt ZZZZY 3)070(.2)072(.1)066(.)001(. 091.248.321.008.ˆ  

where 
w

ˆ = 8.853e-05 is based on 218 degrees of freedom. The values in parentheses are 

the corresponding estimated standard errors. All of the regression coefficients are 

significant, including the constant. 

 

 

Using MLE to fit the AR (1) model for the growth rate (the first difference of log GNP), 

gnpgr, the estimated output is: 

 

Coefficients: 

         ar1  intercept 

      0.3467     0.0083 

s.e.   0.0627     0.0010 

 

 

Variance estimated as 9.03e-05:  log likelihood = 718.61,  aic = -1431.22 

The estimated model AR(1) is: 

ttt ZYY 1)063(.)001(. 347.008.ˆ
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Plots of residuals for the model MA (3) in Figure 6.5 show that standardized residuals 

follow no obvious patterns. Notice that there are outliers, however, with a few values 

exceeding 3 standard deviations in magnitude. The ACF of the standardized residuals 

shows no apparent departure from the model assumptions, and the Q-statistic is never 

significant at the lags shown. 

The upper figure shows a histogram of the residuals (top), and a normal Q-Q plot of the 

residuals (bottom). Here we see the residuals are somewhat close to normality except for a 

few extreme values in the tails. 

 

 

 

 

Figure 6.5 Residual Analysis of GDP series 
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6.4 Unit Roots in Time Series 

 

The problem of unit root arises when either the AR or MA polynomial of ARMA has a root 

on or near the unit circle. A root near 1 in AR part is and indication that the data should be 

differenced, a root near 1 in MA part shows data were over-differenced. 

 

Yt = 0,8yt-1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

j

Yt = 1,1yt-1

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

j  

Figure 6.6. The impact of coefficient in AR(1) on the ACF (graph on the left φ=0.8; graph 

on right φ=1.1) 

 

Let 
tX  be an  AR(1) Process with drift . 

2

1 , (0, )

for 1

t t t t

t

X X Z Z WN

E X
 

For large n, the sampling distribution of 
21ˆ ( , )MLE N

n
. However, the normality is not 

applicable when 1 or 1 . Therefore, we test statistically if 

0 : 1 vs. : 1 AH H . 

Rewriting the model in I(1) [integrated model with degree 1] gives 

 

1

1(1 )

t t t

t t t

X X Z

X X Z
 

 

Subtracting 1tX  from both sides 
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1 1 1

1

*

1

(1 )

(1 ) ( 1)

t t t t t t

t t t

t t t

X X X X Z X

X X Z

X X Z

 

where *1 ; 1 . Now the hypothesis become 

* *

0 : 0 vs. : 0 AH H  

 

Dickey-Fuller Test statistic for AR(1) process 

*

*

ˆ
ˆ  

ˆˆ ( )
 

The limiting distribution of ˆ  has been derived and the tables of the percentiles of the 

distribution under H0 is available. The test is rejected when ˆ  is too negative. 

 

Table values by Dickey and Fuller are available, such as the model with drift will have 

critical values as follows: 

 

Significance level 1% 5% 10% 

Critical values without drift -2.58 -1.95 -1.62 

Critical values with drift -3.43 -2.86 -2.57 

 

Mac Kinnon Table also enables us to find the critical values for the ADF test based on the 

formula 

1 2

1 2K T T  

 

In general for AR(p):  

2

1 1 2 2

* * *

1 1 2 2

* *

1 2 1

1

..... , (0, )

..

(1 .. ); ( ) 1; , 2,..

t t t p t p t t

t t t p t p t

p p

p i j i

i i j

X X X X Z Z WN

X X X X Z

j p

 

Having tX  as an AR(p-1) process yields 
* *

0 1 1: 0 vs. : 0 AH H .  

The test statistics 
*

1

*

1

ˆ
ˆ  

ˆˆ ( )
 keeping the same critical values for rejecting null 

hypothesis. 
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Example: Given AR(3) with drift 

2

1 2 3

* * *

1 2 3

Given (0, )

0.1503 0.0041 0.9335 0.1548

ˆ ˆ ˆ ˆ( ) 0.1135; ( ) 0.0028; ( ) 0.0707; ( ) 0.0708

t

t t t t t

Z WN

X X X X Z  

* *

0 1 1: 0 vs. : 0 AH H  

0.0041
ˆ  =-1.464

0.0028
>-2.57  At 10% level of significance we fail to reject null 

hypothesis. There exists Unit root. 

 

 

Sequential test procedure:  

1. Start with a relatively high number of lags, such as 10  

2. Subsequently, reduce the number of lags until the last coefficient is significant 

different from zero at 10 % level of significance.  

3. Compare the models (without drift and trend, with drift, and with drift and trend) by 

looking at the Akaike criterion. Then choose the model having the lowest Akaike 

criterion. 

4. If the value of the test statistic is greater than (or in absolute values lesser than) the 

critical value, fail to reject the existence of unit root.  

 

The Phillips-Peron Test: A nonparametric method of controlling for higher order serial 

correlation in the series. The test statistic follows a t-distribution asymptotically. Mac 

Kinnon table values are also used to test unit root.  

 

Example: Given AR(3) without drift 

2

1 2 3

* * *

1 2 3

Given (0, )

0.0012 0.9395 0.1585

ˆ ˆ ˆ( ) 0.0018; ( ) 0.0707; ( ) 0.0709

t

t t t t t

Z WN

X X X X Z  

* *

0 1 1: 0 vs. : 0 AH H  

0.0012
ˆ  =-0.667

0.0018
>-1.62  At 10% level of significance we fail to reject null 

hypothesis. There exists Unit root. 

 

6.5. Detrended Series 

 

Consider the following random walk model without drift 

2

1 1

, (0, )

( ) ( ( 1) )

t t t

t t t t t

X a bt Z Z WN

X a bt Z a b t Z b Z Z
 

MA(1) part has unit root which destroys the stationarity. 
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Trend stationary time series are not mean stationary but include a trend. Including a trend 

component into the regression model, the process is expressed as 

Yt = a + bt +βXt +Zt, 

 

where Xt is a stationary process. Differencing this series increases variance of the error 

term. Therefore, by LSE of the trend, one can obtain, the stationary series 

1 2
ˆ ˆ ˆ ˆ( ).t tX Y t  

 

Difference stationary time series (which are most of economic time series) contain a 

stochastic trend, differencing results in a stationary time series (see Figure 3.b). 

 

Trend Stationary Process 

  

.Difference stationary process 

 

Figure 6.7. Examples to Trend and Difference stationary processes (source R.Fuess) 

 

For stationarity of the error terms of the estimation equation Yt = a + Xt + t the following 

rules are observed: 
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Yt ~ I(0) and Xt ~ I(0)  t ~ I(0), 

Yt ~ I(1) and Xt ~ I(0)  t ~ I(1), 

Yt ~ I(1) and Xt ~ I(1)  t ~ I(1), if Y and X are not cointegrated, 

Yt ~ I(1) and Xt ~ I(1)  t ~ I(0), if Y and X are cointegrated. 

 

The residuals are only then I(0) if both variables Y and X either are I(0) or I(1) and 

cointegrated. The simplest case of cointegration is given when Y and X are I(1) and the 

linear combination of both variables is I(0), i.e. the residuals are stationary.  

 

Dickey and Fuller provide the appropriate test statistics to determine whether a series 

contains a unit root, a unit root plus drift, and/or a unit root plus drift plus a time trend. 

 

For a series having a structural break point results in weakly dependent residuals. In such 

cases Phillips-Perron Test (1988) can be used to test the existence of unit root. 
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Example: S&P 500 index, Period:  02.01.1995 – 31.12.2007 daily data 

400

600

800

1000

1200

1400

1600

95 96 97 98 99 00 01 02 03 04 05 06 07

S&P 500 index

 

-.08

-.06

-.04

-.02

.00

.02

.04

.06

95 96 97 98 99 00 01 02 03 04 05 06 07

DIF_S_P_500_INDEX

 

Figure 6.8. Original and differenced series 

 

Let  yt   denote index of S&P 500 and Zt denote white-noise 

ttt ZYY 1  

Unit root test: 

Ho:   =1        S&P 500 index has unit root ( not stationary) 

H1     <1       no unit root (stationary) 
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Null Hypothesis: S_P_500_INDEX has a unit root 

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=28) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -1.926797  0.3201 

Test critical values: 1% level  -3.432187  

 5% level  -2.862237  

 10% level  -2.567185  

*MacKinnon (1996) one-sided p-values.  

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(S_P_500_INDEX)  

Method: Least Squares   

Date: 06/18/08   Time: 20:01   

Sample (adjusted): 1/03/1995 12/31/2007  

Included observations: 3228 after adjustments 

Variable 

Coefficie

nt Std. Error t-Statistic Prob.   

          

S_P_500_INDEX(-1) 

-0.00149

3 0.000775 -1.926797 0.0541 

C 1.942350 0.872543 2.226080 0.0261 

R-squared 0.001149     Mean dependent var 0.312655 

Adjusted R-squared 0.000840     S.D. dependent var 12.18334 

S.E. of regression 12.17822     Akaike info criterion 7.837794 

Sum squared resid 478444.8     Schwarz criterion 7.841561 

Log likelihood 

-12648.2

0     F-statistic 3.712547 

Durbin-Watson stat 2.086200     Prob(F-statistic) 0.054093 
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Null Hypothesis: DIF_S_P_500_INDEX has a unit root 

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=28) 

          
   t-Statistic   Prob.* 

          
Augmented Dickey-Fuller test statistic -59.09627  0.0001 

Test critical values: 1% level  -3.432188  

 5% level  -2.862237  

 10% level  -2.567185  

          
*MacKinnon (1996) one-sided p-values.  

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(DIF_S_P_500_INDEX)  

Method: Least Squares   

Date: 06/18/08   Time: 21:44   

Sample (adjusted): 1/04/1995 12/31/2007  

Included observations: 3227 after adjustments 

          

Variable 

Coefficie

nt Std. Error t-Statistic Prob.   

          
DIF_S_P_500_INDEX(

-1) 

-1.03987

2 0.017596 -59.09627 0.0000 

C 0.000375 0.000190 1.973382 0.0485 

          
R-squared 0.519901     Mean dependent var -2.13E-06 

Adjusted R-squared 0.519752     S.D. dependent var 0.015557 

S.E. of regression 0.010781     Akaike info criterion 

-6.22145

1 

Sum squared resid 0.374839     Schwarz criterion 

-6.21768

3 

Log likelihood 10040.31     F-statistic 3492.369 

Durbin-Watson stat 2.000633     Prob(F-statistic) 0.000000 

          
 

We do not reject Ho and can conclude Dif_S&P has no root and it is stationary 

 



95 

 

Example: A series of data on the Annual GDP of a country is log-transformed and 

differenced. The graphs of these three series are presented in Figure 6.9 
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Figure 6.9 Graphs of GDP data having a log transformation and difference filter. 
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ACF log(GDP)                                                 ACF Dlog(GDP) 

 

Figure 6.10  ACF, PACF of log transformed series (left) and diffrenced log(GDP) (right) 

 



97 

 

 

Figure 6.11: Outputs of the Unit root tests 

 

The Models Fitted 

 

Model 1: AR(1)                                          Model 2 ARIMA(1,1,2) 

 

 

Figure 6.12: Outputs of the plausible models 
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Residual Analysis 

  Model 1                                                Model  2 
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Figure 6.13: Residual plots of two models 

ACF of Residuals 

      MODEL 1                                                 MODEL 2 
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6.6. Structural Breaks-Chow test 

 

The aim is to determine if there exist a structural change in the relationship. Fit models 

separately for subsample to see if there are significant differences in the estimated equations. 

The steps are: 

1. Partition of data set data into subsamples at times having significant structural 

breakpoints. 

2. Estimate model over whole sample and save residual sum of squares 

3. Estimate model with different coefficients before and after the date t1. 

4. Calculate test statistics  

         1

( 2 ) ( )
( )

( )

T k e e
F t

e e k
 

where : residuals for unrestricted model, e: residuals of restricted model, T: no. of 

observations,  k no. of parameters 

 

5. Conclude that the model is stable if F is below the critical value   

 

Example: Given the series below, test if there exists any structural break. 

time
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Figure 6.14 Plot of the sries 

 

Chow Breakpoint Test  probability 

F-statistics 38.39 0.00 

Log Likelihood ratio 65.75 0.00 

  Therefore, Ho: No structural changes is rejected! 
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Exercises:  

1. Based on the output, determine and test if the following series whose plot is given 

below contain a structura break. 

4

5

6

7

8

9

1965 1970 1975 1980 1985 1990 1995 2000

LUN

 

Varying regressors: All equation variables  

Equation Sample: 1962M01 2000M09  

     
     F-statistic 1848.832  Prob. F(1,463) 0.0000 

Log likelihood ratio 747.7519  Prob. Chi-Square(1) 0.0000 

Wald Statistic  1848.832  Prob. Chi-Square(1) 0.0000 

     
     

 

 

2. Yearly electric use of a certain plant has been recorded and plotted as below. Based 

on the graphs and analyses given, test it the unit root exists and find the appropriate 

model for the series.  

3.  
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ACF  

Original series                                  Differenced series 

 

 

 

 

Null Hypothesis: ELECTRIC_USE has a unit root  

Exogenous: Constant  

  
Lag Length: 11 (Automatic based on SIC, MAXLAG=12)  

   

t-Statistic    Prob.*  

Augmented Dickey-Fuller test statistic  -3.817925   0.1096  

Test critical values:  1% level  

 

-3.501445  

 

 

5% level  

 

-2.892536  

 

 

10% 

level  

 

-2.583371  
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Null Hypothesis: D(ELECTRIC_USE) has a unit root  

Exogenous: Constant  

  
Lag Length: 10 (Automatic based on SIC, MAXLAG=12)  

   

t-Statistic    Prob.*  

Augmented Dickey-Fuller test statistic  -11.45223   0.0001  

Test critical values:  1% level  

 

-3.501445  

 

 

5% level  

 

-2.892536  

 

 

10% level  

 

-2.583371  

 
 

 

MODEL 1: 

Dependent Variable: DIF_ELECTRIC_USE  

 
Convergence achieved after 3 iterations  

 
Variable  Coefficient  Std. Error  t-Statistic  Prob.    

C  -0.501761  9.145950  -0.054862  0.9564  

AR(1)  0.004764  0.076082  0.062621  0.9502  

AR(2)  -0.085144  0.075745  -1.124090  0.2640  

AR(3)  -0.202099  0.081909  -2.467361  0.0155  

AR(12)  0.638938  0.082295  7.764024  0.0000  

R-squared  0.641363      Mean dependent var  -0.763441  

Adjusted 

R-squared  0.625061      S.D. dependent var  92.56389  

S.E. of 

regression  56.67897      Akaike info criterion  10.96495  

Sum squared 

resid  282700.5      Schwarz criterion  11.10111  

Log likelihood  -504.8701      F-statistic  39.34330  

Durbin-Watson 

stat  2.614008      Prob(F-statistic)  0.000000  

Inverted AR 

Roots        .94       .82-.50i     .82+.50i   .49-.86i  

 

 .49+.86i       .02+.97i     .02-.97i  -.47+.83i  

 

-.47-.83i      -.84+.47i    -.84-.47i       -.97  
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Model 2: 

    

Variable  Coefficient  

Std. 

Error  t-Statistic  Prob.    

C  -1.081713  1.127498  -0.959393  0.3400  

AR(1)  0.346492  0.085281  4.062930  0.0001  

AR(2)  -0.235234  0.077020  -3.054188  0.0030  

AR(12)  0.645663  0.073520  8.782100  0.0000  

MA(1)  -0.973815  0.017299  -56.29357  0.0000  

R-squared  0.744881      Mean dependent var  -0.763441  

Adjusted 

R-squared  0.733285      S.D. dependent var  92.56389  

S.E. of 

regression  47.80414  

    Akaike info 

criterion  10.62437  

Sum squared 

resid  201100.8      Schwarz criterion  10.76053  

Log likelihood  -489.0330      F-statistic  64.23428  

Durbin-Watson 

stat  1.803597      Prob(F-statistic)  0.000000  
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Residual Analyses 

Model 1                                         Model 2 
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Chapter 7 

Seasonal ARIMA Models 

 

Dependence on the past tends to occur most strongly at multiples of seasonal lag s. For 

example, monthly economical data is expected to have a seasonal effect of lag 12 a strong 

component, or temperature having a seasons of three months etc.  

Definition: 
t t N

X  is said to be pure Seasonal ARMA(P,Q)s having  form 

t

s

t

s ZBXB )()(        

where  

)..1()();..1()( 2

21

2

21

Qs

Q

sssPs

P

sss BBBBBBBB  

Example 1: For a stationary ARMA(1,0)3, P=1, Q=0, s=3 

ttttt ZXXZXB 3

3 )1(  

State the conditions for stationarity: 

1
1

01
3

3 BB  

Find the first 4 PACF values. 

),()( 3 httt XZXCovh  

By Yule Walker equations 

)1()4(

)0()3(

)1()2(

)2()1(

)3()0( 2

 

Replacing )1()1()2( in we find  0)4(,0)1(,0)2(  

2

2

1
)0()3(  

Therefore, )3(,0)4()1()2(  

 

 

PACF’s  

property off-cutby       0;

0
)1(1

)1()2(
;0)1(

4433

2

2

2211
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Definition: 
t t N

X  is said to be Integrated Seasonal ARIMA (p,d,q)x(P,D,Q)s having 

form t

s

t

Dsds ZBBXBBBB )()()1()1)(()(  

where 

  

)..1()(

)..1()(

)..1()(

)..1()(

2

21

2

21

2

21

2

21

q

q

p

p

Qs

Q

sss

Ps

P

sss

BBBB

BBBB

BBBB

BBBB

 

Example 2: ARMA(1,0)3 can also be expressed as ARIMA(1,0,0)x(0,0,0)3 

 

Example 3: ARIMA(0,0,0)x(1,1,0)3 

ttttttt ZXXXXZXBB )()1)(1( 633

33
 

Example 4: ARIMA(0,0,0)x(1,1,1)3 

3633

333 )()1()1)(1( tttttttt ZZXXXXZBXBB  

Example 5: ARIMA(0,1,0)x(1,0,1)3 

3431

33 )()1()1)(1( tttttttt ZZXXXXZBXBB  

 

 

Example 7: On Outbord Marine Data quarterly collected from Dec. 1983 to Sept. 1993 
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Figure 7.1. Time series graph of the data 
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Original series                                            Differenced series 

 

 

MULTIPLICATIVE MODEL (Classical) 

Year Data Seasonal Adjusted Year  Seasonally Adjusted 

12/ 1983 147.6 210.7279544 3/1988 259.7 370.7726948 

3/1984 251.8 240.9128147  401.1 383.7574662 

 273.1 230.5266085  464.6 392.173791 

 249.1 216.0401135  479.7 416.0354977 

 139.3 198.8780762 3/1989 264.4 377.4828668 

3.1995 221.2 211.6358801  402.6 385.19261 

 260.2 219.6375816  411.3 347.1826953 

 259.5 225.0598533  385.9 334.684383 

 140.5 200.5913116 3/1989 232.7 332.2248982 

3/1986 245.5 234.8852105 ….. 309.2 295.8309862 

 298.8 252.2202513 …… 310.7 262.2651676 

 287 248.9101268 ……… 293 254.1138228 

 168.8 240.9951131 Unnormalized Normalized  

3/1987 322.6 308.6516046 Seas. Index Seas. Index  

 393.5 332.1575264 115.872% 116.0504%  

 404.3 350.6423842 112.776% 112.9497%  

3/1988 259.7 370.7726948 68.508% 68.6136%  

 401.1 383.7574662 102.229% 102.3863%  

   399.385% 400.0000%  
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Figure 7.2. Seasonally adjusted series and MA series 

  

Example 2: Monthly marriages in New York for between 2000-2005 
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Figure 7.3 Plot of the original series 
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ARIMA Model: marriages 

 

Final Estimates of Parameters 

Type          Coef     SE Coef         T        P 

AR   1      0.8201      0.0778     10.53    0.000 

SAR 12      0.6469      0.1161      5.57    0.000 

Constant     4.003       1.077      3.72    0.000 

Mean         62.99       16.95 

 

Number of observations:  60 

Residuals:    SS =  3907.02  (backforecasts excluded) 

              MS =   68.54  DF = 57 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag               12        24        36        48 

Chi-Square      15.5      33.4      44.8      63.4 

DF                 9        21        33        45 

P-Value        0.079     0.042     0.082     0.037 
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Forecasts from period 60 

                             95 Percent Limits 

Period      Forecast        Lower        Upper       Actual 

  61         51.3288      35.0984      67.5592 

  62         56.5594      35.5695      77.5493 

  63         56.4888      32.8306      80.1469 

  64         63.4298      38.1350      88.7246 

  65         72.8732      46.5350      99.2115 
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Time Series Plot for marriage
(with forecasts and their 95% confidence limits)
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Figure 7.4 Plots of the Residual analyses 

  

 

Example: Differenced data follow significant dependence on the observations at every lag 

4.There is not significant effect of AR or MA parts. Therefore, the model which fits best to 

the data is ARIMA(0,1,0)x(0,0,0)4. 

 

4

1 4 5(1 )(1 ) ( )t t t t t t tB B X Z X X X X Z  
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Residual checks: Errors should be uncorrelated 

 



113 

 

 

 

Heteroskedasticity  refers to non-constant variance. Based on the correlogram of the 

residuals and squared residuals, we can conclude that there exists no serial correlation on 

the residual squares. Therefore, the series is homoscedastic. 
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Forecasting: 
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Figure 7.5. Forecast values based on classical approach (above) and the 

multiplicative approach (below) 

 

Exercises: 

1. For the multiplicative seasonal ARIMA(1,2,1)x(2,1,2) 6  write the model in 

original form. 

2. Express ARIMA(0,1,0)x(1,1,1)3  in equation form. 

3. Express  ARIMA(1,1,0)x(1,1,1)3 in equation form. 
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Chapter 8 

ARCH(m) (Autoregressive Conditional Heteroskedasticity) Models 

 

Stationary and nonstationary processes presented till now are assumed to have constant 

variance (homoskedasticity)-unconditional variance. However, some series exhibit periods 

of unusually large volatility resulting in non-constant variance. The volatility in the series is 

modeled by taking into account the conditional variance.  

 

Consider the return or relative gain of a stock at time t is  

1

1

t t
t

t

Y Y
X

Y
 where tY  is the price of the stock at time t. 

From here, one can write, 1(1 )t t tY X Y . Taking the logarithm of both sides and first 

difference yields 

1ln( ) ln(1 ) ln( )t t tY X Y  

1 1 1ln ln( ) ln( ) ln(1 ) ln( ) ln( )

ln ln(1 )

t t t t t t

t t

Y Y Y X Y Y

Y X
 

If the percent change, tX , stays relatively small in magnitude, then 

 ln(1 )t tX p  and ln t tY p . Therefore, the highly volatile periods tend to be 

clustered together.  

 

ARCH(1) 

Let t t tX Z  and  

2 2

0 1 1t tX  

where Gaussian WN(0,1)tZ  

The conditional distribution of tX given 1tX  is 2

1 0 1 t-1N(0, + X )t tX X  

Representation of ARCH(1) as AR(1) 
2 2 2

2 2

0 1 1

2 2 2 2 2

0 1 1

( )

, where ( 1) and (1)

t t t

t t

t t t t t t t

X Z

X

X X Z Z Chi square

 

The Properties of ARCH process are: 
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Let the series contain 
1, ,...t t tX X X  

1. 0t t t t t
byindependence

E X E Z E E Z   

2. 2 2 2 2 2 2

t t t t t t tVar X X E Z E E Z E  

2 2 2

0 1 1

2 2 2 2 2 0
0 1 1 0

11

t t tVar X E E X

 

3. 
1

1

,

, 0

t h t t h t t t h t h

t h t t t h t h

X X E X X E E X X X

X X E X E X X
 

 

4. If 1 1, the process is White Noise and its unconditional distribution is symmetrical 

around zero (leptokurtic distribution: see below) 

5. If 
2

13 1  in addition to property  4, 
2

tX  is a causal AR(1) process with 

1( ) , 0hh h  

6. If 13 1 , in addition to property 5, then 
2

tX  is strictly stationary with infinite 

variance. 

 

GARCH(m,r) 

Generalized ARCH model with order m,r is 

2 2 2

0

1 1

t t t

m r

t j t j j t j

j j

X Z

X
 

GARCH(1,1) is 

2 2 2

0 1 1 1 1 1 1; 1t t tX  

The process can be expressed as ARMA(1,1) 

2 2 2 2 2

0 1 1 1 1( ) ( 1) ( 1)t t t t tX X Z Z  

2 2 2 2

2 2 2 2

1 1 1 1 1 1

2 2 2

1 1 0 1 1

( 1)

( ) ( 1)

t t t t

t t t t

t t t

X Z

X Z

X
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Contribution of descriptive statistics on Model determination: 

The skewness and the kurtosis of a distribution are 

,   

respectively. If the distribution is normal, K(y)=3, S(y)=0. Thereofre, for any distribution, 

K(y) – 3 is called the excess kurtosis .  

Under normality assumption, and  are distributed asymptotically as normal with 

zero mean and variances 6/T and 24/T, respectively. 

 

Financial data often exhibit leptokurtosis, i.e. a kurtosis higher than 3 or an excess kurtosis 

higher than 0. We consider such return pattern especially for high frequency data, for 

example daily data. For monthly, quarterly or yearly aggregated data the distribution turns 

more towards a normal distribution. 

 

 

Figure 8.1. The forms of Skewness and Kurtosis  for different values 

b) Test of Normality 

Additional to Q-Q plot and goodness of fit tests Jarque-Bera test statistic measures the  

difference of the skewness and kurtosis of the series with those from the normal 

distribution. The statistic is computed as: 

 

Under the null hypothesis of a normal distribution, the Jarque-Bera statistic is distributed as 
2
 with 2 degrees of freedom. [H0: The distribution is Normal] 

1% ≈ 9,21 ;5% ≈ 5,99. The test is only adequate for large samples, whereas for small 

samples you have to interpret it cautiously. 
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Example 1: Dax TR returns between 1965-2003 (source R.Fuess) 
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Figure 8.2. Original series 
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Figure 8.3. Differenced series 
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Figure 8.4. Histogram of the differenced series, Normality test and descriptive statistics
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Example 2: The series contain observations from Istanbul Stock Exchange ( National 

Defence) daily from 07/03/2000 to 31/12/2007. 
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Figure 8.5. The plot of the original series 
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Skewness   0.634921
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Figure 8.6 The histogram and Normality check for the original data. (skewed to right) 

 

Test the stationarity of original data by using ADF Test : 

 

Test the stationarity of differenced  data by using ADF Test : 

 

 

The series becomes stationary after differencing with order 1. 
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Figure 8.7. The histogram of the difference data show high kurtosis and is symmetric. 

Normality test is done (Jarque-Bera) 

 

As the Kurtosis is high, this is a sign for ARCH effects 

 

 

The correlogram of the differenced data shows that the returns are not correlated. 
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However, the squared returns are correlated. Here, the Coefficient for AR and MA terms are 

not significant. Therefore, we regress differenced data on constant and the variance. 
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The Model is 
2 2 2

1 10.508 0.0986 0.866t t tX  

Residual Checks:  

 

 

 

 

Both correlogram show that residuals and squared residuals are white noise. This şeads us 

to conclude that there exists NO ARCH effects left. 
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Chapter 9 

Vector Autoregressive Analysis 

 

9.1. Vector autoregression (VAR) is an econometric model used to capture the evolution 

and the interdependencies between multiple time series, generalizing the univariate AR 

models. All the variables in a VAR are treated symmetrically by including for each variable 

an equation explaining its evolution based on its own lags and the lags of all the other 

variables in the model. A VAR model describes the evolution of a set of k variables measured 

over the same sample period (t єT) as a linear function of only their past evolution. The 

variables are collected in a k x 1 vector yt, which has as the i
th

 element yi,, the time t 

observation of variable yi.  

 

For example, if the i
th

 variable is GDP, then yi,t is the value of GDP at t. 

 A (reduced) p-th order VAR,    VAR(p), is 

1 1 2 2 ...t t t p t p ty c A y A y A y  

where c is a k x 1 vector of constants (intercept), Ai is a k x k matrix (for every i = 1, ..., p) and 

εt is a k x 1 vector of error terms satisfying the conditions 

1. [ ] 0tE .    that is, every error term has mean zero;  

The structural, economic shocks which drive the dynamics of the economic 

variables are assumed to be independent, which implies zero correlation between 

error terms as a desired property. This is helpful for separating out the effects of 

economically unrelated influences in the VAR.  

For instance, there is no reason why an oil price shock (as an example of a supply 

shock) should be related to a shift in consumers' preferences towards a style of 

clothing (as an example of a demand shock); therefore one would expect these 

factors to be statistically independent.  

2. [ ]t tE   the contemporaneous covariance matrix of errors;                            

(n x n positive definite matrix); This is a desirable feature especially when using 

low frequency data. For example, an indirect tax rate increase would not affect tax 

revenues the day the decision is announced, but one could find an effect in that 

quarter's data.  

3. [ ] 0t t kE    for any k>0 ; there is no correlation across time;                           

no serial correlation in individual error terms.  

 

For order p the set of equations becomes 

http://en.wikipedia.org/wiki/Econometric
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
http://en.wikipedia.org/wiki/Sample_%28statistics%29
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/GDP
http://en.wikipedia.org/wiki/Intercept
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Error
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Supply_shock
http://en.wikipedia.org/wiki/Supply_shock
http://en.wikipedia.org/w/index.php?title=Demand_shock&action=editredlink
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Positive_definite
http://en.wikipedia.org/wiki/Indirect_tax
http://en.wikipedia.org/wiki/Tax_revenues
http://en.wikipedia.org/wiki/Tax_revenues
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Serial_correlation
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 The l-periods back observation yt-l is called the l-th lag of y. Thus, a p-th order VAR is also 

called a VAR with p lags 

 

Order of integration of the variables 

Note that all the variables used have to be of the same order of integration. We have the 

following cases: 

 All the variables are I(0) (stationary):  

     one is in the standard case, ie. a VAR in level  

 All the variables are I(d) (non-stationary) with d>1:  

o The variables are cointegrated:  

     the error correction term has to be included in the VAR. The      model 

becomes a Vector error correction model (VECM) which can be seen as a 

restricted VAR.  

o The variables are not cointegrated:  

the variables have first to be differenced d times and one has a VAR in 

difference 

 

Example: VAR(1) 

Suppose {y1t}tєT denote real GDP growth, {y2t} tєT denote inflation 

1, 11 11 11 12

21 222 2 2, 1 2

tt t

t t t

yy c A A

A Ay c y
 

1 1 11 1, 1 12 2, 1 1

2 2 21 1, 1 22 2, 1 2

t t t t

t t t t

y c A y A y

y c A y A y  

 One equation for each variable in the model. 

 The current (time t) observation of each variable depends on its own lags as well as 

on the lags of each other variable in the VAR. 

 

Expressing VAR(p) as VAR(1) 

The transformation amounts to merely stacking the lags of the VAR(p) variable in the new 

VAR(1) dependent variable and appending identities to complete the number of equations. 

 

Example: VAR(2) model 

yt = c + A1yt − 1 + A2yt − 2 + et  

can be recast as the VAR(1) model 

http://en.wikipedia.org/wiki/Order_of_integration
http://en.wikipedia.org/wiki/Cointegration
http://en.wikipedia.org/wiki/Cointegration
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11 2

1 20 0 0

t t t

t t

y yc A A

y I y
where I is the identity matrix. 

The equivalent VAR(1) form is more convenient for analytical derivations and allows more 

compact statements. 

 

Structural VAR (SVAR) with p lags 

0 0 1 1 2 2 ...t t t p t p tB y c B y B y B y e  

where c0 is a k x 1 vector of constants, Bi is a k x k matrix,  i = 0, ..., p, and et is a k x 1 vector 

of error terms.  

The main diagonal terms of the B0 matrix (the coefficients on the i
th

 variable in the i
th

 

equation) are scaled to 1. 

The error terms et (structural shocks) satisfy the conditions and particularity that all the 

elements off the main diagonal of the covariance matrix E(etet') = Σ are zero. That is, the 

structural shocks are uncorrelated. 

 

Example: Two variable structural VAR(1) is: 

1, 1, 101 01 111 12

2, 2, 102 02 221 22

1   

1

t t t

t t t

y yb c eB B

y yb c eB B
 

where  Var(ei)= σi
2
, i=1,2;   cov(e1,e2) = 0. 

 

Reduced VAR 

By premultiplying the structural VAR with the inverse of B0 

1 1 1 1 1

0 0 0 1 1 0 2 2 0 0...t t t p t p ty B c B B y B B y B B y B e  

and denoting 

1

0 0B c c ; 
1

0 i iB B A  , i=1,..,p;  
1

0 t tB e  

one obtains the p-th order reduced VAR 

1 1 2 2 ...t t t p t p ty c A y A y A y  

Note that in the reduced form all right hand side variables are predetermined at time t. As 

there are no time t endogenous variables on the right hand side, no variable has a direct 

contemporaneous effect on other variables in the model. 

http://en.wikipedia.org/wiki/Identity_matrix
http://en.wikipedia.org/wiki/Error
http://en.wikipedia.org/wiki/Main_diagonal
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However, the error terms in the reduced VAR are composites of the structural shocks  

εt = B0
-
 
1
et.  

 

Thus, the occurrence of one structural shock ei,t can potentially lead to the occurrence of 

shocks in all error terms εj,t, thus creating contemporaneous movement in all endogenous 

variables.  

Consequently, the covariance matrix of the reduced VAR 

' 1 ' 1 1 1

0 0 0 0[ ] [ ( ) ] ( )t t t tE E B e e B B B  

can have non-zero off-diagonal elements, thus allowing non-zero correlation between error 

terms. 

 

10.2. Impulse Response Function 

The key tool to trace short run effects with an SVAR is the impulse response function.  

1 1 2 2 ...t t t p t p ty c A y A y A y     can be expressed as MA(∞) 

1 1 2 2 ... ( )t t t t ty c B   

The matrix  l   has the interpretation '

t l
l

t

y
 

i.e. the row i , column j element of l  identifies the consequences of a one-unit increase in 

the jth variable’s innovation at date t (εtj)  for the value of the ith variable at time t+l, holding 

all other innovations at all dates constant. 

A plot of the row i, column j element of  l  as a function of lag l is called the 

non-orthogonalized impulse response function. It describes the response of ,i t ly to a 

one-time impulse in ity with all other variables dated t or earlier held constant. 

Checking for the lag length 

The model should represent the observed processes as precise as possible along with 

attaining error terms to be at minimum. Therefore, the choice of the number of 

variables to be included into the model is important.  

If the lag length is chosen to be too short, serial correlation among error terms become 

significant. 

A test on the two possible choice of the order 

0 :H the model needs p+1 lags  

       (the coefficients of 1, 2, ,, ,...,t p t p k t py y y  are all zero) 

:aH the model needs p lags  



128 

 

Test statistic: Log Likelihood test  

(restrictedmodel)

( restrictedmodel)

Likelihood
Chi square

Likelihood un
 

 The test is performed to check if choosing the lag p+1 lags improves the power of the test 

or not. 

 

Other measure for comparison is the Squared Residuals                                   

ˆ
ln( )

T
 

Compared for both models based on the statistics: Akaike Information Criterion, 

Schwarz information Criterion. 

 

Example: Let following log transformed variables denote 

{y1t}tєT   consumer price index,  {y2t}tєT   GDP; {y2t}tєT Money stock M1 

{y2t}tєT  quarterly average of 3-month interest rate  

VAR representation: 
1 1 2 2

1 1 1,1 1, 1 1, , 1 1,1 1, 2 1, 2, 2 1,1 3, 1, 3, 1,1 4, 1, 4, 1

1 1 2 2

2 2 2,1 1, 1 2, , 1 2,1 2, 2 2, 2, 2 2,1 3, 2,

.. .. .. ..

.. .. ..

p p p p

t t k k t t k t t p k t p t p k t p t

p p

t t k k t t k t t p k

y c a y a y a y a y a y a y a y a y

y c a y a y a y a y a y a y3, 2, 4, 2,1 4, 2

1 1 2 2

3 2 3,1 1, 1 3, , 1 3,1 2, 2 3, 2, 2 3,1 3, 3, 3, 3, 4, 3,1 4, 3

1 1 2

4 2 4,1 1, 1 4, , 1 4,1 2, 2

..

.. .. .. ..

..

p p

t p k t p t p t

p p p p

t t k k t t k t t p k t p k t p t p t

t t k k t t

a y a y

y c a y a y a y a y a y a y a y a y

y c a y a y a y 2

4, 2, 2 4,1 3, 4, 3, 4, 4, 4,1 4, 4.. .. ..p p p p

k t t p k t p k t p t p ta y a y a y a y a y

 

 

Figure 9.1 Impulse response plots of the variable above 
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Example: Given     

      
1 1

1 1

    -0.2         0.6 0.4

                      0.2 0.3

t t t t yt

t t t zt

y z y z ε       

z y z ε     
 

 

Figure 9.2 Impulse response functions of the example given 

 

 

Example: Given     

      
1 1

1 1

            0.6 0.4

0.2 0.2 0.3

t t t yt

t t t t zt

y y z ε       

z y y z ε       
 

 

Figure 9.3 Impulse response function of the system of equations above 
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Example: Exchange Rate and ISE Index are the variable of the concern. VAR(2) model is 

fitted to the series. 

 

 

 
 

 

Figure 9.3 Impulse response functions of the selected variables 
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 Vector Autoregression Estimates 

 Date: 07/20/08   Time: 10:59 

 Sample (adjusted): 1/04/2001 12/31/2007 

 Included observations: 1748 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

   
    EXCHANGE_RATE ISE 

   
   EXCHANGE_RATE(-1)  1.082797  0.001270 

  (0.02245)  (0.00077) 

 [ 48.2217] [ 1.65550] 

EXCHANGE_RATE(-2) -0.092452 -0.001190 

  (0.02232)  (0.00076) 

 [-4.14189] [-1.56054] 

ISE(-1) -10.63907  0.993499 

  (0.70086)  (0.02394) 

 [-15.1799] [ 41.4932] 

ISE(-2)  10.57968  0.007108 

  (0.70180)  (0.02398) 

 [ 15.0751] [ 0.29645] 

C  15468.75 -100.0376 

  (3309.16)  (113.051) 

 [ 4.67452] [-0.88489] 

   
    R-squared  0.991659  0.998669 

 Adj. R-squared  0.991640  0.998666 

 Sum sq. resids  4.15E+11  4.84E+08 

 S.E. equation  15431.88  527.1996 

 F-statistic  51808.14  326895.9 

 Log likelihood -19335.85 -13433.53 

 Akaike AIC  22.12911  15.37589 

 Schwarz SC  22.14475  15.39153 

 Mean dependent  1396230.  24460.15 

 S.D. dependent  168779.6  14432.87 
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10.3. Granger causality test 

 

Technique for determining whether one time series is useful in forecasting another.  

t t T
X  is said to Granger-cause t t T

Y  if it can be shown, usually through a series of 

F-tests on lagged values of X (and with lagged values of Y also known), that those X values 

provide statistically significant information about future values of Y. 

 

The Granger test can be applied only to pairs of variables, and may produce misleading 

results when the true relationship involves three or more variables. 

Example: Let 1t t T
Y denote GDP, 2t t T

Y  denote consumption 

0 :H the coefficients of 1, 2, ,, ,...,t p t p k t py y y  are all zero (equivalent of saying  2y does 

not Granger-cause 1y ) 

 

    

Pairwise Granger Causality test    

Sample: 1946:1 1995:4    

Lags: 4 Obs   

Null Hypothesis 189 F-Statistic Probability 

GDP doesnot Granger Cause Cons.  1.39156 0.23866 

Cons. does not Granger cause GDP  7.11192 2.4E-05 

Consumption Granger Cause on GDP. 

http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/F-test
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Example: 

Pairwise Granger Causality Tests 

Date: 07/20/08   Time: 10:40 

Sample: 1/02/2001 12/31/2007 

Lags: 5   

    
      Null Hypothesis: Obs F-Statistic Probability 

    
      INTEREST_RATE does not Granger 

Cause EXCHANGE_RATE 1745  28.3482  1.1E-27 

  EXCHANGE_RATE does not Granger Cause 

INTEREST_RATE  32.1459  2.0E-31 

    
      ISE does not Granger Cause 

EXCHANGE_RATE 1745  58.2545  3.6E-56 

  EXCHANGE_RATE does not Granger Cause ISE  2.31559  0.04151 

    
      GLOBAL does not Granger Cause 

EXCHANGE_RATE 1745  21.4690  6.7E-21 

  EXCHANGE_RATE does not Granger Cause 

GLOBAL  1.16105  0.32611 

    
      ISE does not Granger Cause 

INTEREST_RATE 1745  12.2991  9.7E-12 

  INTEREST_RATE does not Granger Cause ISE  0.10286  0.99158 

    
      GLOBAL does not Granger Cause 

INTEREST_RATE 1745  2.98831  0.01084 

  INTEREST_RATE does not Granger Cause 

GLOBAL  1.48645  0.19105 

    
      GLOBAL does not Granger Cause ISE 1745  20.7727  3.3E-20 

  ISE does not Granger Cause GLOBAL  1.91422  0.08894 
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9.4 Cointegration 

 

If two or more series are themselves non-stationary, but a linear combination of them is 

stationary, then the series are said to be cointegrated.  

 

Example:  

A stock market index and the price of its associated follow a random walk by time. Testing 

the hypothesis that there is a statistically significant connection between the futures price and 

the spot price could now be done by testing for a cointegrating vector.  

 

Example: 
1t t T

Y  Real GDP ;  
2t t T

Y   private investment (real) 

                   

 

Figure 9.4. The graphs of original series and the plots of differenced series of two variables 

              

The usual procedure for testing hypotheses concerning the relationship between 

non-stationary variables was to run Ordinary Least Squares (OLS) regressions on data 

which had initially been differenced.  

 

Although this method is correct in large samples, cointegration provides more powerful tools 

when the data sets are of limited length, as most economic time-series are. 
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http://en.wikipedia.org/wiki/Stationary_process
http://en.wikipedia.org/wiki/Stock_market_index
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The two main methods for testing for cointegration are: 

1. The Engle-Granger three-step method.  

2. The Johansen procedure.  

 

In practise, cointegration is used for such series in typical econometric tests, but it is more 

generally applicable and can be used for variables integrated of higher order (to detect 

correlated accelerations or other second-difference effects).  

 

Multicointegration extends the cointegration technique beyond two variables, and 

occasionally to variables integrated at different orders. 

However, these tests for cointegration assume that the cointegrating vector is constant during 

the period of study. In reality, it is possible that the long-run relationship between the 

underlying variables change (shifts in the cointegrating vector can occur). The reason for this 

might be technological progress, economic crises, changes in the people’s preferences and 

behaviour accordingly, policy or regime alteration, and organizational or institutional 

developments. This is especially likely to be the case if the sample period is long. To take this 

issue into account Gregory and Hansen (1996) have introduced tests for cointegration with 

one unknown structural break and Hatemi-J (2007) has introduced tests for cointegration 

with two unknown breaks. 

Example: 
t t T

Y  income ;  t t T
X   consumption. Suppose both series are I(1). 

Let 1t t Yt
Y Y  random walk having 

2
[ ]

Yt
Var Y t  

But in the long run,  0
t

X cY   where c is the propensity to consume 

     t t t
X cY  

Consider a series of k models  

1 1 1 1

2 2 1 2 1 2

1

, , ..,

t t t

t t t t t kt

kt kt kt

y y

y y y y y

y y

      

is cointegrated if each series 

a. nonstationary (integrated of order one) 

b. there exists (at least one)  linear  combination  t
a y   a stationary process 

a is called cointegrating vector. 

 

If cointegration factor is known, then the test of cointegration is reduced to a unit root test  

If we can reject the null hypothesis of non-stationarity of linear, then this leads us to 

http://en.wikipedia.org/w/index.php?title=The_Engle-Granger_two-step_method&action=edit
http://en.wikipedia.org/w/index.php?title=The_Johansen_procedure&action=edit
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conclude as a combination of I(1) time series. This shows that the data indicates 

cointegration. 

 

If vector of cointegration factor is unknown, then an estimation of the cointegration 

relationship is required 

  

Engle-Granger Approach 

Estimation of parameters can be done by OLS estimation of the linear regression equation: 

      0 1 2
..

t t M Mt t
Y Y Y  

Dickey-Fuller t test is applied to the OLS residuals ˆ
t . Rejecting the null hypothesis of 

non-stationarity concludes “cointegration relationship” does exist. 

 

Note: We have to keep in mind that the use of ˆ
t  has consequences for the critical values 

of the ADF test. In comparison to the critical values of the usual Dickey-Fuller the critical 

values here are in absolute values higher and depend on the number of included variables 

M. If the cointegration relation contains a deterministic trend we speak about a 

deterministic cointegration. The critical values for M (at most equals six) are given by 

MacKinnon (1991). The critical values of MacKinnon are calculated by: 

K =  + 1T
-1

 + 2T
-2

 

 

Three-step approach  

1. Determine the I(d) for every variable 

Dickey Fuller, Perron tests  H0: series is non-stationary 

2. Estimate the cointegration relation by OLS regression 

3. Test the residuals for stationarity 

1 0 1 2 1 0 1 2

1 0 1 2
ˆ ˆˆ

t t t t t t

t t t

y y y y

y y
 

H0: series are not cointegrated . ADF Test does not give correct critical values because 

of the OLS residuals. For this reason, we use MacKinnon Table to determine the critical 

values 

 

9.5.Error Correction Model 

 

Granger Representation Theorem 

Determination of the dynamic relationship between cointegrated variables in terms of their 

stationary error terms. 

For bivariate case: Two integrated I(1) variables 1t
y and 2t

y yielding one cointegrated 

combination (0)
t

I  
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1

1 1 1 11 1 12 2 1

1

1

2 2 1 21 1 22 2 1

1

( )

( )

p

t t i t i i t i t

i

p

t t i t i i t i t

i

y a y a y

y a y a y

 

We estimate parameters by OLS. Regression with only stationary variables on both sides.  

 

Multivariate Cointegration Analysis - Johansen Test 

 

VAR(1) having  M   I(1) variables can be expressed as: 

1t t t
Y Y  

Where, Y, μ and ε are (Mx1) vectors and Γ is an (MxM) matrix. 

By subtracting the lagged vectors Y from both sides of the equation we receive the 

following relation: 

1 1 1

t 1 t-1

t t-1

Y  = + (A  - I)Y  + 

Y = + (  - I)Y  + 

t t t t t

t

t

Y Y Y Y

 

t 
Y  and are I(0) vectors.  Thus, the term (Γ - I)Yt-1 must be also I(0). If the variables are 

not cointegrated, then the matrix Γ is a unit matrix I. If there exists r cointegrated relations 

( t  is a (rx1) vector), this term can be written as a I(0) variable: 

1 1 1
( )

t t t
I Y Y   

where γ’ is the (rxM) matrix of the cointegration coefficients and λ is a (Mxr) 

matrix.Multiplying with the cointegration matrix the latter results in the (MxM) matrix   

(Γ - I). This term is I(0) and λ can be interpreted as the matrix of the M times r error 

correction coefficients: 

                                                                                     

1t t t
Y e  

This model is a generalization of the ECM in the previous section.If the initial model 

constitutes a VAR(p) model then the error correction representation contains additionally 

(p-1) difference terms. 

Since the matrix (Γ - I) can be represented by the product of a (rxM) and a (Mxr) matrix, it 

has the rank r.  

This means that the number of cointegrated relations is determined by the rank ( r) of the 

matrix.  

In the marginal case r = 0, i.e Γ = I, the model reduced to a VAR model in differences (M 

independent random walks). If r equals M we are concerned with M stationary level data, 

I(0). 
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Johansen Test 

The approach of Johansen is based on the maximum likelihood estimation of the matrix  

(Γ - I) under the assumption of normal distributed error variables. Following the estimation 

the hypotheses 

                      H0: r = 0,   H0: r = 1, …, H0:r = M-1  

are tested using likelihood ratio (LR) tests. 

 

Example. Variables are: Exchange rate, interest rates, S&P 500(GLOBAL) index, ISE 

index from 01.01.2000 to 31.12.2007 

 

 

 

Figure 9.5 Plots of the series 

 

 

 

 

 

 

 



139 

 

 

Included observations: 1745 after adjustments  

Trend assumption: Linear deterministic trend  

Series: GLOBAL EXCHANGE_RATE INTEREST_RATE ISE   

Lags interval (in first differences): 1 to 4  

Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None *  0.065285  156.7717  47.85613  0.0000 

At most 1 *  0.017048  38.96042  29.79707  0.0034 

At most 2  0.005118  8.955273  15.49471  0.3695 

At most 3  1.20E-06  0.002096  3.841466  0.9599 

     
      Trace test indicates 2 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None *  0.065285  117.8113  27.58434  0.0000 

At most 1 *  0.017048  30.00514  21.13162  0.0022 

At most 2  0.005118  8.953177  14.26460  0.2901 

At most 3  1.20E-06  0.002096  3.841466  0.9599 

     
      Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
 

1 Cointegrating Equation(s):  Log likelihood -46009.85  

     
     Normalized cointegrating coefficients (standard error in parentheses) 

GLOBAL EXCHANGE_RATE INTEREST_RATE ISE  

 1.000000 -0.000120 -16.55210 -0.026394  

  (0.00014)  (1.44457)  (0.00218)  

     
     2 Cointegrating Equation(s):  Log likelihood -45994.85  

     
     Normalized cointegrating coefficients (standard error in parentheses) 

GLOBAL EXCHANGE_RATE INTEREST_RATE ISE  

 1.000000  0.000000 -15.66567 -0.024910  

   (1.30729)  (0.00194)  

 0.000000  1.000000  7382.376  12.36210  

   (1649.84)  (2.44689)  
 



140 

 

 

Therefore, we can conclude that in the long term these three variables are cointegrated and 

there are 2 cointegration equations. 

 

Pairwise Granger Causality Tests 

Date: 07/20/08   Time: 10:40 

Sample: 1/02/2001 12/31/2007 

Lags: 5   

    
      Null Hypothesis: Obs F-Statistic Probability 

    
      INTEREST_RATE does not Granger 

Cause EXCHANGE_RATE 1745  28.3482  1.1E-27 

  EXCHANGE_RATE does not Granger Cause 

INTEREST_RATE  32.1459  2.0E-31 

    
      ISE does not Granger Cause 

EXCHANGE_RATE 1745  58.2545  3.6E-56 

  EXCHANGE_RATE does not Granger Cause ISE  2.31559  0.04151 

    
      GLOBAL does not Granger Cause 

EXCHANGE_RATE 1745  21.4690  6.7E-21 

  EXCHANGE_RATE does not Granger Cause 

GLOBAL  1.16105  0.32611 

    
      ISE does not Granger Cause 

INTEREST_RATE 1745  12.2991  9.7E-12 

  INTEREST_RATE does not Granger Cause ISE  0.10286  0.99158 

    
      GLOBAL does not Granger Cause 

INTEREST_RATE 1745  2.98831  0.01084 

  INTEREST_RATE does not Granger Cause 

GLOBAL  1.48645  0.19105 

    
      GLOBAL does not Granger Cause ISE 1745  20.7727  3.3E-20 

  ISE does not Granger Cause GLOBAL  1.91422  0.08894 
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