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Office hour: Tuesday 10-12, Room: 2303, Platz der Alten Synagoge

Exercise course: Every other week (on average!)

In the exercise course, participants present solutions to either theoretical
or small empirical problems.

By doing so, you can also earn a bonus on the final course grade.
There will be 80 points altogether in the final exam.
You can earn

p*=6x k3 (1)

bonus points, where k is the number of times presented.



Prerequisites: “Einfiihrung in die Empirische Wirtschaftsforschung”, “Okonometrie
1" or "Applied Econometrics”



Course QOutline
e Introduction: Basic properties of financial return series
e Time series basics

e Parametric volatility modeling

(i) GARCH
(ii) Stochastic volatility models
(iii) Regime—switching models

e Modeling the dependence structure of returns

(i) Multivariate GARCH processes
(ii) Multivariate regime—switching and copulas

e Further topics, e.g., Value—at-Risk (Regulatory framework, quantile
estimation, backtesting)
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e Timo Terasvirta (2009): An introduction to univariate GARCH
models, Handbook of Financial Time Series, Springer, downloadable
at http://ideas.repec.org/p/hhs/hastef/0646.html.

e Annastiina Silvennoinen and Timo Terasvirta (2009): Multivariate

GARCH Models, Handbook of Financial Time Series, Springer,
downloadable at http://ideas.repec.org/p/hhs/hastef/0669.html.

e Malevergne, Sornette (2006), Extreme Financial Risks, From Dependence
to Risk Management, Springer, Berlin. (For copulas)



Returns
Let P; be the asset price at time t (stock, stock index, exchange rate,...).
There is a dividend payment D, at the end of period t.

Then the (single—period) discrete return is

P+ Di— P

R
! P4

(2)

Dividends are often excluded from return calculations (price index vs.
total return index).

Often (2) is multiplied by 100 to be interpretable in terms of percentage
returns.



The continuously compounded or log return is (ignoring dividends for
simplicity)
ry = log P, — log P;_1 = log(1 + Ry). (3)

This name derives from the fact that the interest rate i,, equivalent to
R;, when interest is paid n times in the period, solves

(1+i—”)n:1+Rt. (4)

n

Continuous compounding is approached as n — oo, and then

67;00:1—|—Rt$’lzoo:10g(].—|—Rt):Tt. (5)

Recall that



e Empirical analysis is often based on log returns. These have the
advantage that they can be additively aggregated over time.

e That is, if 7, ;4 denotes the (multi—period) return from time ¢ to time
t + 7, we have

Tt t+1

P P, Po., P
bg(;):log<Pt+ Pierot ;1) 7
t t+7—14L t4+7-2 t

_ Zlog( 2 ) S (8)

Pt—i—z 1 i—1

e This is not the case for the discrete return, where

T

Ritir = H(l + Riyq) — 1. (9)

1=1



e On the other hand, if we consider a portfolio of NV assets with weights

a;, and returns R;;, @ = 1,...,n, then the portfolio return is
N
Ryt =) a;Ry, (10)
i=1
whereas
N
Tpt = log(l + Rp,t) 7& Z a;Tit, (11)
i=1

I.e., the linear combination of continuously compounded asset returns is
not the continuously compounded portfolio return.

e For small z,1

log(l—l—x):aj—x +———+ - =z, (12)

so that r; may serve as a reasonable approximation to the discrete return.

INote that the expansion (not the approximation) is only valid for x € (—1, 1].



Table 1: Discrete and continuous returns

100 x Ry -30.0 -200 -15.0 -10.0 -50 O 5.0 10.0 150 20.0 30.0
100 x r -35.7 -223 -163 -105 -51 O 49 95 140 182 26.2

R; and vy = log(1 + R;) are the discrete and continuously compounded returns, respectively.

e The approximation
N
Tyt & Z ;75 (13)

is also frequently used.
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Basic Statistical Properties of Returns: Return
Distribution

e The traditional assumption that has long dominated empirical finance was
that log—returns over longer time intervals are approximately normally
distributed.

e For example, daily returns are the sum of a large number of intraday
returns.

e Appealing to the central limit theorem, Osborne (1959) argued in a
classical article that?

“under fairly general conditions [...|] we can expect that the distribution
function of [ri] will be normal.”

2Brownian Motion in the Stock Market, Operations Research 7, 145-173.
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S&P 500 index level (daily), January 1990 to March 2010
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S&P 500 index returns (daily), January 1990 to March 2010
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DAX 30 index returns (daily), January 1990 to October 2009

12

10

-10
1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

14



600

Histogram of S&P 500 returns

500

400

300

200

100

10

15

15



Density of the S&P 500 returns
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Log—Density of the S&P 500 returns
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Density of the DAX returns
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Log—Density of the DAX returns
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Basic Statistical Properties of Returns: Return
Distribution

Financial Returns at higher frequencies (higher than a month at least)
are not normally distributed.

In particular, they have much more probability mass in the center and
the tails than a normal distribution with the same variance.

This implies, among other things, that the probability of large losses is
much higher than under the Gaussian assumption.

At lower frequencies, however, the central limit theorem appears to
operate, and the return distribution begins to closer resemble a Gaussian
shape.
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A further simple device for detecting departures from normality (or any
other hypothesized distribution) are QQ plots.

This is a scatter plot of the empirical quantiles (vertical axis) against the
theoretical quantiles (horizontal axis) of a given distribution (e.g., the
normal distribution).

Excess kurtosis means that the probability of large negative or positive
values is greater than under the corresponding normal density function.
So the lower quantiles are smaller than the normal quantiles, and the
upper quantiles are greater.

Consequently, fat tails show up in QQ plots as deviations below an ideal
straight line at the lower quantiles, and above the straight line at the
upper quantiles.
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Kurtosis

e A distribution with higher peaks and fatter tails (and, consequently, less
mass in the shoulders) than the normal is called “leptokurtic”.

e [he standardized fourth moment is often calculated to measure the
degree of leptokurtosis, i.e.,

E(r —pn)*

o4 ’

xk = kurtosis(r) = (14)

where 1 and o2 are the mean and variance of r, respectively, and the
sample analogue is

R = 5

T 25:1(735 —7)?
= (1)

where 7 is the sample mean.

e For the normal distribution, x = 3, and a distribution with Kk > 3 is then
classified as leptokurtic.

e The intuition is that the contribution of the rare and large returns in the
tails is larger for the fourth moment than for the second (variance).
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Skewness

Sometimes we also observe deviations from symmetry, although these

tend to be less pronounced and more difficult to detect.

The moment—based skewness measure is

E(r — p)°

s = skewness(r) = 2
o

Y

with sample counterpart

T3 (re — p)?

5= —
53

For the normal (and any other symmetric density), s = 0.

(16)

(17)

For example, if s < 0, then negative tail observations dominate, and the

distribution is skewed to the left.
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Jarque—Bera test for normality
e Measures k and s can be used to construct a test for normality.

-~ asy

e Under normality, 5 ‘~’ Normal(0,6/T), and & ‘~’ Normal(3,24/T), so
T3 /6 x*(1), T(R—3)%/24 "~ x*(1), (18)
and both are asymptotically independent, so
JB =T5%/6 4+ T (R —3)?/24 '~ x?(2), (19)
a x? distribution with two degrees of freedom.

e Note that we cannot easily use 5 as a basis for a test of symmetry.
Although symmetric distributions always have s = 0, the asymptotic
standard error 1/6/T is valid only under normality, and it is much larger
for fat—tailed symmetric distributions.
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Alternative Distributions for Returns

e Mandelbrot (1963),% in a famous study of cotton price changes, was one
of the first to point out the fat—tailed nature of return distributions.

e Mandelbrot suggested (nonnormal) «a-stable (or stable Paretian)
distributions as a generic model for asset returns, which may be viewed
as a generalization of Osborne’s Gaussian model.

3B. Mandelbrot (1963). The Variation of Certain Speculative Prices. Journal of Business 36, 394-419.
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Alternative Distributions for Returns: Discrete Normal
Mixtures

e A k—component (discrete) normal mixture distribution is described by
the density

F) = 3" Aol o), ol pno?) = exp{—@‘“) }

2T0 202
(20)
Ai >0, 5=1,...,k, are the mixing weights, satisfying Zj Aj =1, and
the 1 s and ajz-s are the component means and variances respectively.

e Flexible with respect to skewness and kurtosis.

e A possible interpretation of the normal mixture is that returns are
normally distributed, but that return expectation and variance depend
on the market regime, e.g., bull vs. bear markets.

29



e For the S&P 500 and the DAX, we find

Table 2: Normal mixture parameter estimates
Mmoo & X > 55
S&P 500 0.801 0.071 0518 0.199 —0.125 4.771
DAX 30 0.822 0.098 1.025 0.178 —0.285 7.580

e The basic mixture specification (20) can be generalized in various
directions to provide a more satisfactory return model.

e For example, the mixing weights can be made time—varying, so that the
regimes are persistent or depend on a set of predetermined variables.

30



Return Quantiles

Normal mixture QQ plot for the DAX returns
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Alternative Distributions for Returns: Student’s ¢

The standard Student’s ¢ distribution with mean u, scale o and v degrees
of freedom has density

v+l e )2 "W th/2
flx) = F(Z/(Q)Q 7)wa {1 + ( yagL) } , v>0. (21)

The variance is 0%v/(v — 2), and exists only for v > 2.

The smaller v, the fatter the tails, and normality is approached as
Vv — 00.

Parameter v is jointly estimated with the other parameters (e.g., via
maximum likelihood).

(Generalizations that allow for skewness exist.)

35



Alternative Distributions for Returns
Here I'(«) denotes the gamma function,

with the properties

INa) = / e
0

— —:co‘_le_xdx};o +(a—1)/ ¥ %e *dx
4 0

\

aVa

= (a=Dl(a—1),

(integration by parts), and thus for n € N,
I'n)=n—1)!'=n-1)(n—-2)---1.

I(1/2) = /.

(22)

(23)
(24)

(25)

(26)
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Alternative Distributions for Returns: Generalized
Exponential Distribution (GED)

e This has density

T — p
o)

flz) =

92— (1/p+1)y { 1
eXp | —5

ol b AR U

where p measures the thickness of the tails.

e For p = 2, this nests the normal, and for p = 1 we get the Laplace
(double exponential) distribution.

e Recall that the normal density with mean p and variance o2 is
1 (z — p)?
— — . 28
e (28)

e (Generalizations that allow for skewness exist.)

37



Concentrating on the Tails

e Often (e.g., when calculating risk measures such as Value—at—Risk) we
are not interested in the entire distribution of returns but only in the
probability of extreme events.

e It is often found that the tails of return distributions are well described

by a power law, i.e., for large x, with F' being the distribution function
(cdf),
1 —F(x)=P(r| >x) = cx™?, (29)

where « is the tail exponent.

e For the normal distribution, we have, as © becomes large,

|- Flz) ~ — exp{—x—z}, (30)

AT 2

the tails tend to zero faster than exponentially.
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e In a log—log plot of the empirical complementary cdf (1 — F(x))
against |r| (assuming approximate symmetry), the observations should
approximately plot along a straight line (which can be drawn using linear

regression,
log(1 — F(x)) =logc— alog, (31)

the slope parameter is the tail exponent?).

e Several distributions are characterized by power law tails. For example,
Student’s ¢ has power tails with tail index v.

e The tail exponent indicates the maximally existing moment, that is

E(|X|*) =00 fork> . (32)

“Better estimators of « exist.
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10% tail of the S&P 500 returns, 1981-2001
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Here the (regression—based) estimated tail index is 3.17, which is rather
typical for stock returns.
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Temporal Properties of Returns

e Consider the sample autocorrelation function at lag T,

T—T
(¢ = T)(reqr — T)
plr) == . T>0,

where

’FZ%Z?},

t=1

and T is the sample size.

(33)

(34)
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autocorrelations of absolute (demeaned) S&P 500 returns
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Temporal Properties of Returns

e Return series are characterized by volatility clustering, that is, “large
[price] changes tend to be followed by large changes—of either sign—
and small changes tend to be followed by small changes” .

e Thus variance (and thus risk) appears to be persistent and predictable
(in contrast to the direction of price changes).

e Several approaches for capturing time—varying volatility have been
developed, such as (G)ARCH, stochastic volatility, and regime—switching
models.

°B. Mandelbrot (1963). The Variation of Certain Speculative Prices. Journal of Business 36, 394-419.
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Dependence Structure of Returns

In basic portfolio theory, we are interested in the first two moments of
the (portfolio) return distribution, i.e., mean and variance.

In this framework, correlations between assets are of predominant
interest, because the strength of the correlations determines the degree
of risk (variance) reduction that can be achieved by efficient portfolio
diversification.

Simple correlation estimates may be misleading, however, due to
asymmetric dependence structures.

This refers to the observation that, for example, stock returns are more
dependent in bear markets (market downturns) than in bull markets.

Therefore, diversification might fail when the benefits from diversification
are most urgently needed.
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Dependence Structure of Returns

e A popular tool to describe this asymmetric dependence structure are the
exceedance correlations of Longin and Solnik (2001).°

e For a given threshold 6, the exceedance correlation between (demeaned)
returns r1 and ro is given by

(35)

(0) — Corr(z,ylxr > 0,y >0) for >0
PV = Corr(z,ylr < 0,y < 0) for 6 <0

e Let us consider monthly returns of MSCI stock market indices for the US
and Germany from January 1970 to June 2008.

OExtreme Correlation of International Equity Markets. Journal of Finance 56, 649-676.
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