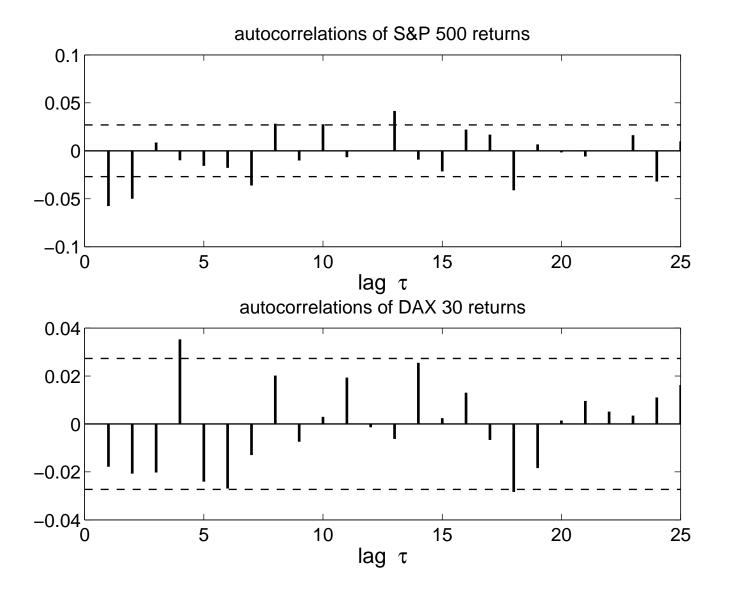
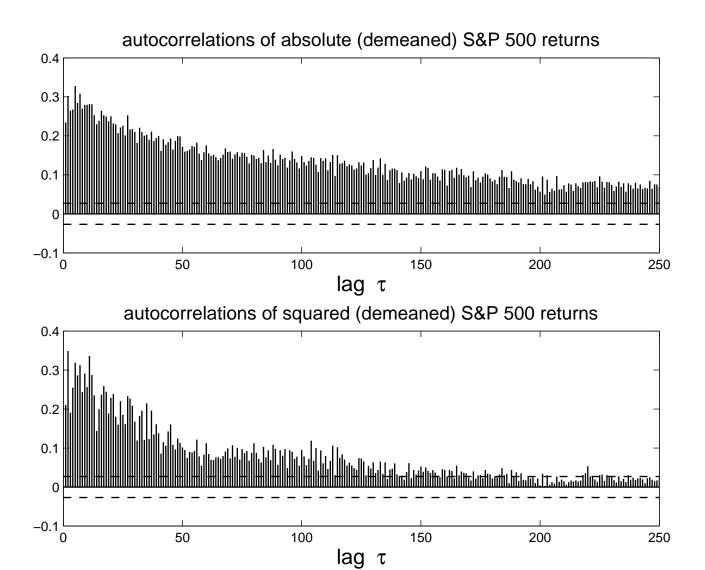
Financial Data Analysis

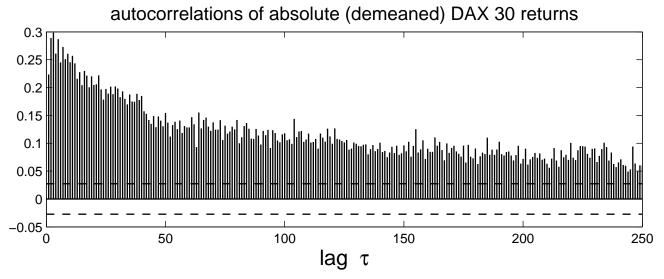
GARCH Models

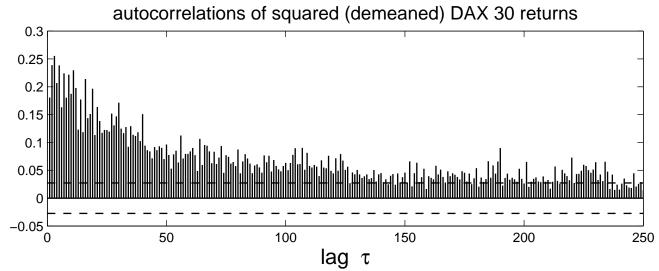
July 12, 2011

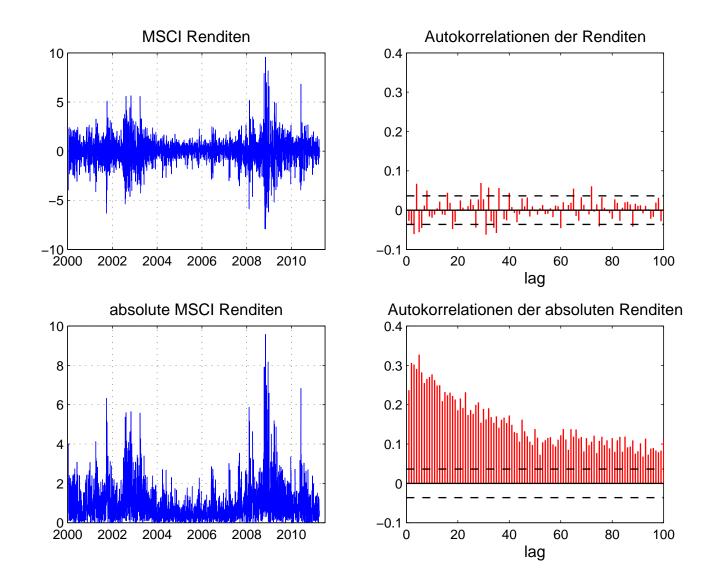


DAX: 1990-2009; S&P500: 1990-2010









MSCI Europe, 2000-2011

Several Stylized Facts

- Returns usually show no or only little autocorrelation.
- Volatility appears to be autocorrelated (volatility clusters).
- Normality is rejected in favor of a leptokurtic (fat-tailed) distribution.

Volatility Modeling and the Stylized Facts

ullet Consider the following model for returns r_t ,

$$r_t = \mu_t + \epsilon_t$$

$$\epsilon_t = \eta_t \sigma_t, \quad \eta_t \stackrel{iid}{\sim} N(0, 1),$$

$$(1)$$

where we assume that the *innovation sequence* η_t is independent of σ_t .

- μ_t in (1) is the conditional mean of r_t conditional on the information up to time t-1. This may, for example, be constant or described by a low-order ARMA process.
- \bullet We are interested in the error term described by the second line of (1).
- If σ_t^2 depends on information available at time t-1, then σ_t^2 is the conditional variance of ϵ_t (and thus also r_t).
- Denote the information available up to time t by I_t ; I_t typically consists of the past history of the process, $\{\epsilon_s : s \leq t\}$.

Then we can also write

$$\epsilon_t | I_{t-1} \sim \mathsf{N}(0, \sigma_t^2),$$
 (2)

i.e., ϵ_t is *conditionally* normally distributed with variance σ_t^2 .

- However, if the conditional variance is time-varying (which is the case we are interested in), the *unconditional* distribution of ϵ_t will *not* be normal.
- To illustrate, consider the marginal kurtosis of ϵ_t , assuming ϵ_t is stationary with finite fourth moment,

$$\mathsf{kurtosis}(\epsilon_t) \ = \ \frac{\mathsf{E}(\epsilon_t^4)}{\mathsf{E}^2(\epsilon_t^2)} = \frac{\mathsf{E}(\eta_t^4 \sigma_t^4)}{\mathsf{E}^2(\eta_t^2 \sigma_t^2)} = \frac{\mathsf{E}(\eta_t^4) \mathsf{E}(\sigma_t^4)}{\underbrace{\mathsf{E}^2(\eta_t^2) \mathsf{E}^2(\sigma_t^2)}}$$
 Independence of η_t and σ_t^2

$$= \underbrace{\frac{\mathsf{E}(\eta_t^4)}{\mathsf{E}^2(\eta_t^2)}}_{=3} \frac{\mathsf{E}(\sigma_t^4)}{\mathsf{E}^2(\sigma_t^2)} > 3, \tag{3}$$

since

$$\mathsf{E}(\sigma_t^4) > \mathsf{E}^2(\sigma_t^2) \quad (\mathsf{E}(X^2) > \mathsf{E}^2(X)).$$
 (4)

• An interpretation of (3) results from noting that

$$\frac{\mathsf{E}(\sigma_t^4)}{\mathsf{E}^2(\sigma_t^2)} = 1 + \frac{\mathsf{E}(\sigma_t^4) - \mathsf{E}^2(\sigma_t^2)}{\mathsf{E}^2(\sigma_t^2)}$$
$$= 1 + \frac{\mathsf{Var}(\sigma_t^2)}{\mathsf{E}^2(\sigma_t^2)}.$$

- Thus, for a given level of the *unconditional variance* $\mathsf{E}(\sigma_t^2) = \mathsf{E}(\epsilon_t^2)$, the kurtosis of the marginal distribution of ϵ_t is increasing in the variability of the conditional variance.
- If $Var(\sigma_t^2)$ is large, then σ_t^2 will often be considerably smaller (larger) then $E(\sigma_t^2)$, giving rise to high peaks (thick tails) of the marginal distribution, respectively.

- Thus, even with normal innovations (conditional normality), time—varying conditional volatility may account for at least part of the leptokurtosis observed in financial return series.
- A further property of the error process is uncorrelatedness,

$$\mathsf{E}(\epsilon_t \epsilon_{t-\tau}) = \mathsf{E}(\eta_t \eta_{t-\tau} \sigma_t \sigma_{t-\tau}) = \underbrace{\mathsf{E}(\eta_t)}_{=0} \mathsf{E}(\eta_{t-\tau} \sigma_t \sigma_{t-\tau}) = 0.$$

- Absolute values and squares can be correlated, however, depending on the specification for the conditional variance process $\{\sigma_t^2\}$.
- Thus, at least in principle, a process of the form (1) is capable of reproducing several of the properties typically detected in financial returns.

The ARCH Process

• Engle (1982) introduced the class of **a**uto**r**regressive **c**onditional **h**eteroskedastic (ARCH) models, where (1) is specified as

$$r_{t} = \mu_{t} + \epsilon_{t}$$

$$\epsilon_{t} = \eta_{t}\sigma_{t}, \quad \eta_{t} \stackrel{iid}{\sim} N(0, 1),$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}^{2},$$

$$\omega > 0, \quad \alpha_{i} \geq 0, \quad i = 1, \dots, q,$$

$$(5)$$

which is referred to as ARCH(q).

• Conditions (6) make sure that σ_t^2 may not become negative.

¹Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. *Econometrica* 50, 987-1007.

- σ_t^2 in (5) is the conditional variance of ϵ_t , given I_{t-1} .
- To find the unconditional variance, take expectations in (5),

$$\mathsf{E}(\sigma_t^2) = \mathsf{E}(\epsilon_t^2) = \omega + \sum_{i=1}^q \alpha_i \mathsf{E}(\epsilon_{t-i}^2),$$

so that

$$\mathsf{E}(\sigma_t^2) = \mathsf{E}(\epsilon_t^2) = \frac{\omega}{1 - \alpha_1 - \alpha_2 - \dots - \alpha_q}.$$

This makes sense only if

$$\sum_{i=1}^{q} \alpha_i < 1, \tag{6}$$

which turns out to be the condition for the finiteness of the variance in the ARCH(q) model, and is often referred to as the stationarity condition.

- If the covariance stationarity condition (6) is not satisfied, this does *not* imply that the process is not (strictly) stationary.
- It means that the unconditional distribution has no finite second moment.
- It has been shown that the ARCH process (even with normal innovations) generates marginal (unconditional) distributions with tails decaying as a power law, i.e., for some $\gamma > 0$,

$$\Pr(|\epsilon_t| > x) \simeq cx^{-\gamma}, \text{ as } x \to \infty,$$

so that moments of ϵ_t exist only of order smaller than γ .

- ullet It may happen that the coefficients of the ARCH equation are so large that $\gamma < 2$.
- The (weaker) condition for strict stationarity will be briefly considered when discussing generalized ARCH (GARCH) models.

• Several further properties of the model can best be illustrated by means of the ARCH(1) specification, given by

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2. \tag{7}$$

We first calculate the fourth moment of the process,

$$\mathsf{E}(\epsilon_t^4) = \mathsf{E}(\eta_t^4 \sigma_t^4) = \mathsf{E}(\eta_t^4) \mathsf{E}(\sigma_t^4) = 3 \mathsf{E}(\sigma_t^4).$$
 (8)

• Squaring (7),

$$\begin{split} \sigma_t^4 &= (\omega + \alpha_1 \epsilon_{t-1}^2)^2 = \omega^2 + 2\omega \alpha_1 \epsilon_{t-1}^2 + \alpha_1^2 \epsilon_{t-1}^4 \\ \mathsf{E}(\sigma_t^4) &= \omega^2 + 2\omega \alpha_1 \mathsf{E}(\epsilon_t^2) + \alpha_1^2 \mathsf{E}(\epsilon_t^4) \\ &= \omega^2 + \frac{2\omega^2 \alpha_1}{1 - \alpha_1} + 3\alpha_1^2 \mathsf{E}(\sigma_t^4) \\ \mathsf{E}(\sigma_t^4) &= \frac{1}{1 - 3\alpha_1^2} \left[\omega^2 + \frac{2\omega^2 \alpha_1}{1 - \alpha_1} \right] = \frac{\omega^2 (1 + \alpha_1)}{(1 - \alpha_1)(1 - 3\alpha_1^2)}, \end{split}$$

which makes sense only if $3\alpha^2 < 1$, which is the condition for the finiteness of the fourth moment.

• In this case, from (8)

$$\mathsf{E}(\epsilon_t^4) = \frac{3\omega^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)},\tag{9}$$

and the kurtosis of the unconditional distribution is, with $\mathsf{E}(\epsilon_t^2) = \omega/(1-\alpha_1)$,

$$\frac{\mathsf{E}(\epsilon_t^4)}{\mathsf{E}^2(\epsilon_t^2)} = \frac{3\omega^2(1+\alpha_1)(1-\alpha_1)^2}{\omega^2(1-\alpha_1)(1-3\alpha_1^2)}
= \frac{3(1-\alpha_1)(1+\alpha_1)}{1-3\alpha_1^2}
= \frac{3(1-\alpha_1^2)}{1-3\alpha_1^2} > 3.$$

The ACF of the squared process,

$$\varrho(\tau) = \operatorname{Corr}(\epsilon_t^2, \epsilon_{t-\tau}^2) = \frac{\mathsf{E}(\epsilon_t^2 \epsilon_{t-\tau}^2) - \mathsf{E}^2(\epsilon_t^2)}{\mathsf{E}(\epsilon_t^4) - \mathsf{E}^2(\epsilon_t^2)},\tag{10}$$

which is well–defined for $3\alpha_1^2 < 1$, is also of interest.

We find

$$\begin{split} \mathsf{E}(\epsilon_t^2\epsilon_{t-\tau}^2) &= \mathsf{E}(\epsilon_{t-\tau}^2\eta_t^2\underbrace{(\omega+\alpha_1\epsilon_{t-1}^2)}) \\ &= \sigma_t^2 \end{split}$$

$$= \omega \mathsf{E}(\epsilon_t^2) + \alpha_1 \mathsf{E}(\epsilon_{t-\tau}^2\epsilon_{t-1}^2) \\ &= \mathsf{E}^2(\epsilon_t^2)(1-\alpha_1) + \alpha_1 \mathsf{E}(\epsilon_{t-\tau}^2\epsilon_{t-1}^2) \\ &= \mathsf{E}^2(\epsilon_t^2) + \alpha_1 [\mathsf{E}(\epsilon_{t-\tau}^2\epsilon_{t-1}^2) - \mathsf{E}^2(\epsilon_t^2)] \end{split}$$

$$= \mathsf{E}(\epsilon_t^2\epsilon_{t-\tau}^2) - \mathsf{E}^2(\epsilon_t^2) = \alpha_1 [\mathsf{E}(\epsilon_{t-\tau}^2\epsilon_{t-1}^2) - \mathsf{E}^2(\epsilon_t^2)], \end{split}$$

which implies $\varrho(\tau) = \alpha_1 \varrho(\tau - 1)$.

ullet For au=1, we have

$$\mathsf{E}(\epsilon_t^2 \epsilon_{t-1}^2) - \mathsf{E}^2(\epsilon_t^2) = \alpha_1 [\mathsf{E}(\epsilon_t^4) - \mathsf{E}^2(\epsilon_t^2)],$$

SO

$$\varrho(\tau) = \alpha^{\tau}. \tag{11}$$

GARCH Models

- In practice, pure ARCH(q) processes are rarely used, since for an adequate fit a large number of lags is usually required.
- A more parsimonious formalization is provided by the **G**eneralized ARCH (GARCH) process, as proposed by Bollerslev (1986) and Taylor (1986).²
- The GARCH(p,q) model generalizes (5) to

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2.$$
 (12)

• To make sure that the variance is positive, Bollerslev (1986) imposed that

$$\omega > 0; \quad \alpha_i \ge 0, i = 1, \dots, q; \quad \beta_i \ge 0, i = 1, \dots, p.$$
 (13)

²T. Bollerslev (1986): Generalized Autoregressive Conditional Heteroskedasticity. *Journal of Econometrics* 31, 307-327. S. J. Taylor (1986): Modelling Financial Time Series, Wiley.

- These conditions are sufficient but can be weakened for models where one of the orders is larger than unity (see below). Conditions (13) are necessary and sufficient for guaranteeing a positive variance process in pure ARCH processes and the GARCH(1,1) process, however.
- ullet Similar to the ARCH(q) process, we can calculate the unconditional variance of process as

$$\mathsf{E}(\sigma_t^2) = \mathsf{E}(\epsilon_t^2) = \frac{\omega}{1 - \sum_{i=1}^q \alpha_i - \sum_{i=1}^p \beta_i},\tag{14}$$

provided the (covariance) stationarity condition

$$\sum_{i=1}^{q} \alpha_i + \sum_{i=1}^{p} \beta_i < 1 \tag{15}$$

is satisfied.

 To characterize the correlation structure of the squared process, define the prediction error

$$u_t = \epsilon_t^2 - \mathsf{E}(\epsilon_t^2 | I_{t-1}) = \epsilon_t^2 - \sigma_t^2.$$
 (16)

- $u_t = \epsilon_t^2 \sigma_t^2 = (\eta_t^2 1)\sigma_t^2$ is white noise but not strict white noise, since it is uncorrelated but not independent.
- Substituting (17) for σ_t^2 into (12) results in

$$\epsilon_t^2 = \omega + \sum_{i=1}^{\max\{p,q\}} (\alpha_i + \beta_i) \epsilon_{t-i}^2 - \sum_{i=1}^p \beta_i u_{t-i} + u_t, \tag{17}$$

where $\alpha_i = 0$ for i > q and $\beta_i = 0$ for i > p.

- Equation (17) is an ARMA($\max\{p,q\},p$) representation for the *squared* process $\{\epsilon_t^2\}$, which characterizes its autocorrelations.
- The ARMA representation can also be used to explicitly calculate the autocorrelations.
- ullet For example, the ARMA(1,1) representation of the GARCH(1,1) process is

$$\epsilon_t^2 = \omega + (\alpha_1 + \beta_1)\epsilon_{t-1}^2 + u_t - \beta_1 u_t.$$
 (18)

Recall that the ACF of the ARMA(1,1) process

$$Y_t = \phi Y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

is

$$Corr(Y_t, Y_{t-\tau}) = \phi^{\tau-1} \frac{(\phi + \theta)(1 + \phi\theta)}{1 + 2\theta\phi + \theta^2}.$$

• Plugging in $\alpha_1 + \beta_1$ for ϕ and $-\beta_1$ for θ gives the ACF of the squares of a GARCH(1,1) process as

$$\varrho(\tau) = (\alpha_1 + \beta_1)^{\tau - 1} \frac{\alpha_1 (1 - \alpha_1 \beta_1 - \beta_1^2)}{1 - 2\alpha_1 \beta_1 - \beta_1^2},$$

provided the fourth moment is finite (see below).

• The GARCH(1,1) process is most often applied in practice.

• To find the moments of this process, it is convenient to write

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \omega + (\alpha_1 \eta_{t-1}^2 + \beta_1) \sigma_{t-1}^2$$

= $\omega + c_{t-1} \sigma_{t-1}^2$, $c_t = \alpha_1 \eta_t^2 + \beta_1$.

- Note that σ_{t-1}^2 is determined based on the information up to time t-2.
- c_{t-1} depends on η_{t-1} .
- ullet Thus c_{t-1} and σ^2_{t-1} are independent, and

$$\mathsf{E}(c_{t-1}^m \sigma_t^n) = \mathsf{E}(c_{t-1}^m) \mathsf{E}(\sigma_t^n) \tag{19}$$

for all m and n.

• We have

$$\mathsf{E}(c_t) = \alpha_1 + \beta_1, \quad \mathsf{E}(c_t^2) = \mathsf{E}(\alpha_1^2 \eta_t^4 + 2\alpha_1 \beta_1 \eta_t^2 + \beta_1^2) = 3\alpha_1^2 + 2\alpha_1 \beta_1 + \beta_1^2.$$

• Since $\mathsf{E}(\sigma_t^2) = \frac{\omega}{1-\alpha-\beta} = \omega/(1-\mathsf{E}(c_t))$,

$$E(\sigma_t^4) = \omega^2 + 2\omega E(c_t) E(\sigma_t^2) + E(c_t^2) E(\sigma_t^4)
E(\sigma_t^4) = \frac{\omega^2 (1 + E(c_t))}{(1 - E(c_t))(1 - E(c_t^2))}
= \frac{\omega^2 (1 + \alpha_1 + \beta_1)}{(1 - \alpha_1 - \beta_1)(1 - 3\alpha_1^2 - 2\alpha_1\beta_1 - \beta_1^2)},$$

where $\mathsf{E}(c_t^2) = 3\alpha_1^2 + 2\alpha_1\beta_1 + \beta_1^2 < 1$ is the condition for the existence of the fourth moment.

The kurtosis is then

$$\frac{\mathsf{E}(\epsilon_t^4)}{\mathsf{E}^2(\epsilon_t^2)} = 3 \frac{(1 - \alpha_1 - \beta_1)(1 + \alpha_1 + \beta_1)}{1 - 3\alpha_1^2 - 2\alpha_1\beta_1 - \beta_1^2}$$

$$= 3 + \frac{6\alpha_1^2}{1 - 3\alpha_1^2 - 2\alpha_1\beta_1 - \beta_1^2}.$$

• To illustrate why GARCH(1,1) typically fits better than even a high–order ARCH(q), we write in lag–operator form and invert (assuming $\beta_1 < 1$)

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \tag{20}$$

$$(1 - \beta_1 L)\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 \tag{21}$$

$$\sigma_t^2 = \frac{\omega}{1 - \beta_1} + \frac{\alpha_1 \epsilon_{t-1}^2}{1 - \beta_1 L} \tag{22}$$

$$= \frac{\omega}{1-\beta_1} + \alpha_1 \sum_{i=1}^{\infty} \beta_1^{i-1} \epsilon_{t-i}^2. \tag{23}$$

- This shows that GARCH(1,1) is ARCH(∞) with geometrically declining lag structure, i.e., $\sigma_t^2 = \tilde{\omega} + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i}^2$, with $\psi_i = \alpha_1 \beta_1^{i-1}$.
- The declining lag structure is reasonable as it implies that the impact of more recent shocks on the current variance is larger than that of earlier shocks.

- The ARCH(∞) representation (20) shows that α_1 can be interpreted as a reaction parameter, as it measures the reactiveness of the conditional variance to a shock in the previous period, i.e., the immediate impact of a unit shock on the next period's conditional variance.
- Parameter β_1 , on the other hand, is a *memory parameter* which measures the memory in the variance process. E.g., if β_1 is small, β_1^i tends to zero very rapidly with i, and the *direct* impact of a shock on future conditional variances dies out soon.

Note on the nonnegativity conditions (13)

We can use lag-operator notation to write the GARCH model as

$$\beta(L)\sigma_t^2 = \omega + \alpha(L)\epsilon_t^2,$$

where

$$\beta(L) = 1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p$$

$$\alpha(L) = \alpha_1 L + \alpha_2 L^2 + \dots + \alpha_q L^q.$$

Inverting gives the ARCH $(\infty)^3$

$$\sigma_t^2 = \frac{\omega}{1 - \sum_i \beta_i} + \frac{\alpha(L)}{\beta(L)} \epsilon_t^2 = \frac{\omega}{1 - \sum_i \beta_i} + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i}^2.$$

³This requires that $\beta(z)$ has all roots outside the unit circle.

 \bullet For σ_t^2 to remain positive with probability 1, we observe that it is necessary and sufficient that

$$\frac{\omega}{1 - \sum_{i} \beta_{i}} > 0, \quad \psi_{i} \ge 0 \text{ for all } i.$$

• These restrictions are weaker than (13) except for the pure $\mathsf{ARCH}(q)$ and the $\mathsf{GARCH}(1,1)$.

• The simplest case is the GARCH(1,2),

$$\sigma_{t}^{2} = \omega + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{2}\epsilon_{t-2}^{2} + \beta_{1}\sigma_{t-1}^{2}$$

$$(1 - \beta_{1}L)\sigma_{t}^{2} = \omega + (\alpha_{1}L + \alpha_{2}L^{2})\epsilon_{t}^{2}$$

$$\sigma_{t}^{2} = \frac{\omega}{1 - \beta_{1}} + \left(\frac{\alpha_{1}L}{1 - \beta_{1}L} + \frac{\alpha_{2}L^{2}}{1 - \beta_{1}L}\right)\epsilon_{t}^{2}$$

$$= \frac{\omega}{1 - \beta_{1}} + \left(\alpha_{1}\sum_{i=1}^{\infty}\beta_{1}^{i-1}L^{i} + \alpha_{2}\sum_{i=2}^{\infty}\beta_{1}^{i-2}L^{i}\right)\epsilon_{t}^{2}$$

$$= \frac{\omega}{1 - \beta_{1}} + \alpha_{1}\epsilon_{t-1}^{2} + \sum_{i=2}^{\infty}(\alpha_{1}\beta_{1}^{i-1} + \alpha_{2}\beta_{1}^{i-2})\epsilon_{t-i}^{2}$$

$$= \frac{\omega}{1 - \beta_{1}} + \alpha_{1}\epsilon_{t-1}^{2} + \sum_{i=2}^{\infty}\beta_{1}^{i-2}(\alpha_{1}\beta_{1} + \alpha_{2})\epsilon_{t-i}^{2}$$

Thus

$$\psi_1 = \alpha_1$$

$$\psi_k = \beta_1^{k-2} (\alpha_1 \beta_1 + \alpha_2), \quad k \ge 2.$$

• This gives rise to the set of necessary and sufficient conditions

$$\omega > 0$$

$$\alpha_1 \geq 0$$

$$1 > \beta_1 \geq 0$$

$$\alpha_1 \beta_1 + \alpha_2 \geq 0.$$

- ullet α_2 may be negative if $\alpha_1>0$ and $\beta_1>0$.
- For the most frequently applied GARCH(1,1) process, however, the nonnegativity constraints $\omega > 0$, $\alpha, \beta \geq 0$ are necessary.

Testing for GARCH

- The tests have to be applied to the residuals $\{\widehat{\epsilon_t}\}_{t=1}^T$ of a model for the conditional mean, which may include exogenous factors time series components (such as ARMA), or just a constant.
- The Ljung-Box-Pierce statistic for the autocorrelations of the squares,

$$Q^{\star} = T(T+2) \sum_{\tau=1}^{K} \frac{\widehat{\rho}_{\widehat{\epsilon}^2}(\tau)^2}{T-\tau} \stackrel{asy}{\sim} \chi^2(K). \tag{24}$$

- Engle (1982) derived a Lagrange multiplier test which works as follows.
- Run the regression with q lags

$$\epsilon_t^2 = b_0 + b_1 \hat{\epsilon}_{t-1}^2 + \dots + b_q \hat{\epsilon}_{t-q}^2 + u_t. \tag{25}$$

• Under H_0 of no ARCH effects (conditional homoskedasticity), the test statistic

$$LM = TR^2 \stackrel{asy}{\sim} \chi^2(q), \tag{26}$$

where T is the sample size and R^2 is the coefficient of determination obtained from the regression (25).

• The test has to be applied to the residuals of a model for the conditional mean (which may include exogenous factors, time series components, or just a constant).

Estimation

- GARCH models are most frequently estimated by conditional maximum likelihood.
- To illustrate, suppose we want to estimate an AR(1)–GARCH(1,1) model for returns r_t .
- That is, the conditional mean of the time series is described by an AR(1), and the conditional variance is driven by GARCH(1,1).
- If we assume conditional normality, the model is

$$r_t = c + \phi r_{t-1} + \epsilon_t, \quad |\phi| < 1 \tag{27}$$

$$\epsilon_t = \eta_t \sigma_t, \quad \eta_t \stackrel{iid}{\sim} \mathsf{N}(0,1)$$
 (28)

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \tag{29}$$

$$\omega > 0, \quad \alpha, \beta \ge 0. \tag{30}$$

- The parameter vector is $\theta = [\theta_1, \theta_2]$, where $\theta_1 = [c, \phi]$ is the conditional mean part, and $\theta_2 = [\omega, \alpha, \beta]$ is the GARCH-part.
- We observe a stretch of length T, $\{r_t\}_{t=1}^T$, and a presample value r_0 (i.e., the first observation of our original sample).
- From the ARMA part, for a given value of θ_1 , $\widehat{\theta}_1 = (\widehat{c}, \widehat{\phi})$, we calculate

$$\widehat{\epsilon}_t = r_t - \widehat{c} - \widehat{\phi}r_{t-1}, \quad t = 1, \dots, T.$$
 (31)

ullet The conditional log-likelihood function, $\log L(\theta)$, is then given by

$$\log L(\widehat{\theta}) = \sum_{t=1}^{T} \ell_t(\widehat{\theta}), \tag{32}$$

where, under conditional normality,

$$\ell_t(\widehat{\theta}) = -\frac{1}{2}\log\widehat{\sigma}_t^2 - \frac{1}{2}\frac{\widehat{\epsilon}_t^2}{\widehat{\sigma}_t^2}, \quad t = 1, \dots, T,$$
(33)

and, for given $\widehat{\theta}_2 = (\widehat{\omega}, \widehat{\alpha}, \widehat{\beta})$,

$$\widehat{\sigma}_t^2 = \widehat{\omega} + \widehat{\alpha}\widehat{\epsilon}_{t-1}^2 + \widehat{\beta}\widehat{\sigma}_{t-1}^2, \quad t = 1, \dots, T.$$
(34)

- To start the GARCH recursion (34), we need initial values $\hat{\sigma}_0^2$ and $\hat{\epsilon}_0^2$.
- One possibility is to set these equal to their unconditional values estimated from the sample at hand, i.e.,

$$\widehat{\sigma}_0^2 = \widehat{\epsilon}_0^2 = \frac{1}{T} \sum_{t=1}^T \widehat{\epsilon}_t^2, \tag{35}$$

with $\hat{\epsilon}_t$, $t = 1, \ldots, T$, given by (31).

• Alternatively, we could treat $\widehat{\sigma}_0^2$ as an additional parameter to estimate, and estimate $\widehat{\epsilon}_0$ via the difference between r_0 and its unconditional mean implied by the AR(1), i.e., $\mathsf{E}(r_0) = c/(1-\phi)$.

- In practice, GARCH models are typically applied to sufficiently long time series, so that the choice of the initialization has negligible impact on the results.
- We then maximize (32) with respect to θ to obtain the maximum likelihood estimator (MLE) $\widehat{\theta}_{ML}$.
- Following standard large sample theory for the MLE, inference (e.g., calculation standard errors) is based on

$$\widehat{\theta}_{ML} \overset{approx}{\sim} \mathsf{Normal}(\theta, I(\widehat{\theta}_{ML})^{-1}),$$
 (36)

where

$$I(\widehat{\theta}_{ML}) = -\frac{\partial \log L(\widehat{\theta}_{ML})}{\partial \theta \partial \theta'} = -\sum_{t=1}^{T} \frac{\partial \ell_t(\widehat{\theta}_{ML})}{\partial \theta \partial \theta'}$$
(37)

is the negative of the Hessian matrix of the log-likelihood function, evaluated at the MLE.

• The derivatives in (37) can be calculated analytically or numerically.

- The Gaussian assumption for η_t often appears to be unreasonable.
- A frequently employed alternative is Student's t, in which case the density of η_t is

$$f(\eta_t; \nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\nu/2)\sqrt{(\nu-2)\pi}} \left(1 + \frac{\eta_t^2}{\nu-2}\right)^{-(\nu+1)/2},$$

where $\nu>2$ is the degrees of freedom parameter and controls the thickness of the tails.

ullet Note that u is a free parameter of the model that is estimated simultaneously with the other parameters from the data.

Fitting GARCH Models

To illustrate typical results, we fit model

$$r_{t} = \mu + \epsilon_{t}$$

$$\epsilon_{t} = \eta_{t}\sigma_{t}, \quad \eta_{t} \stackrel{iid}{\sim} N(0, 1)$$

$$\sigma_{t}^{2} = \omega + \alpha \epsilon_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$

to various stock index series.

• Parameter estimates are reported in Table 1.

Table 1: GARCH(1,1) estimates for various stock return series, approx. 1990–2010

Series	$\widehat{\omega}$	\widehat{lpha}_1	\widehat{eta}_1	$\widehat{\alpha}_1 + \widehat{\beta}_1$
S&P 500	$0.0077 \atop (0.0017)$	$\underset{(0.0067)}{0.0655}$	$\underset{(0.0072)}{0.9284}$	0.9939
DAX	$0.0355 \atop (0.0053)$	0.0918 (0.0089)	$0.8910 \atop (0.0099)$	0.9828
FTSE	0.0113 (0.0025)	$\underset{(0.0081)}{0.0856}$	$0.9059 \atop (0.0087)$	0.9915
CAC 40	$0.0290 \atop (0.0054)$	$\underset{(0.0085)}{0.0851}$	$0.9001 \atop (0.0097)$	0.9852

• Simple diagnostics can be based on the sequence of standardized residuals,

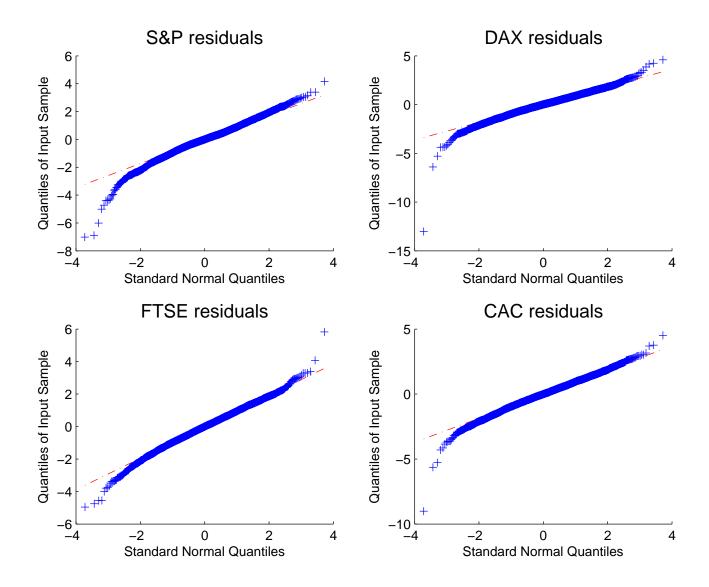
$$\widehat{\eta}_t = \frac{\widehat{\epsilon}_t}{\widehat{\sigma}_t}, \quad t = 1, \dots, T.$$
(38)

- This sequence should behave like an iid sequence from the presumed innovation distribution.
- In particular, the GARCH model should capture all the conditional heteroskedasticity.
- Thus, sequence (38) should not display any conditional heteroskedasticity.
- This can be checked visually by plotting the SACF of the absolute or squared residuals, or by calculating test statistics for conditional heteroskedasticity, as discussed above.
- If the innovations have been assumed normal, we can apply normality tests to (38).

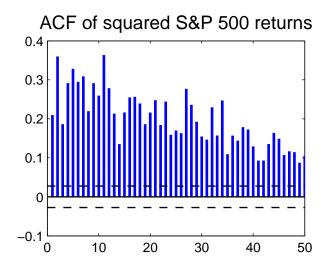
Table 2: Kurtosis of raw returns and residuals (38)

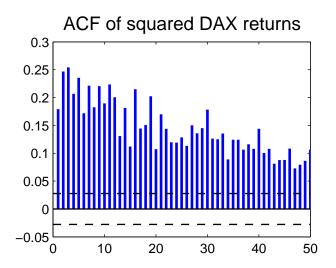
	S&P 500	DAX	FTSE	CAC 40
raw returns	12.1307	8.0553	9.6318	7.8069
residuals (38)	4.8993	9.6475	3.8232	4.9332

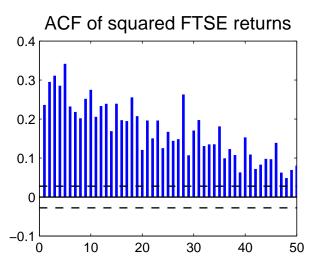
- We observe that GARCH captures part of the excess kurtosis in the unconditional distribution.
- (The number for the DAX is due to the Gorbatschow-Putsch in August 1991.)
- However, the kurtosis of the standardized residuals (38) is still significantly different from the Gaussian value.
- That a leptokurtic (fat-tailed) innovation distribution may be appropriate.

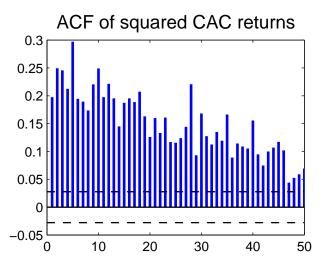


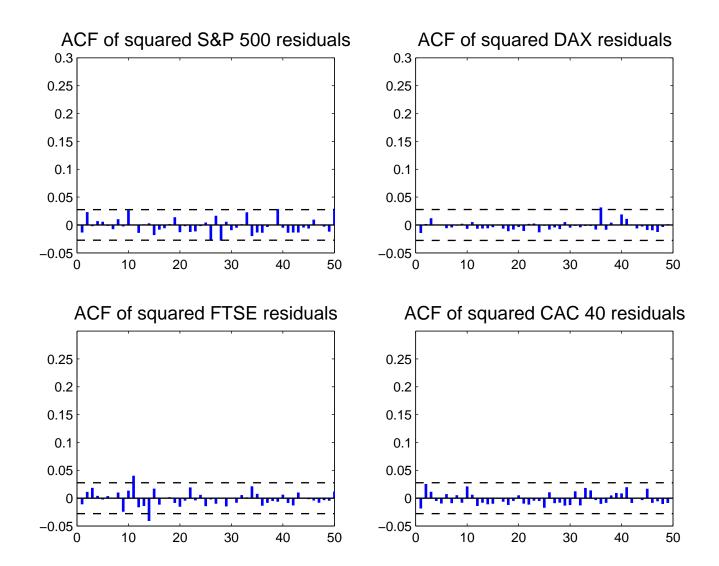
The Q–Q plots of the $\{\widehat{\eta}_t\}$ also indicate a fatter tailed innovation density.



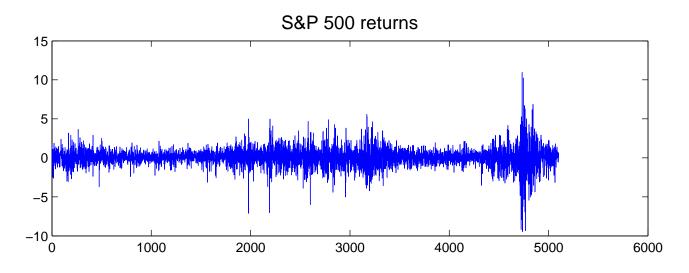


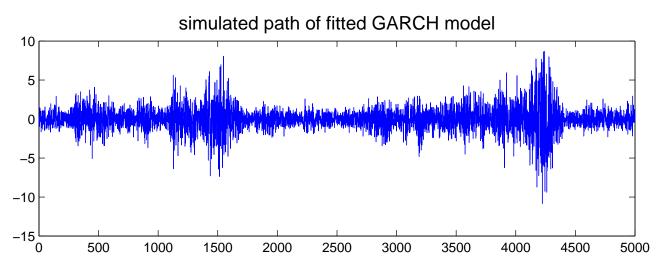






This applies to the standardized residuals (38). GARCH(1,1) appears to be sufficient.





Alternative Innovation Distributions

- In view of these results, it appears reasonable to replace the normal distribution of η_t in the GARCH(1,1) with a more flexible alternative that allows for *conditional* leptokurtosis.
- Two of the most popular candidates in this regard are the
 - Student's t
 - Generalized Error Distribution (GED)
- The unit-variance versions of these are given by

$$f(\eta_t; \nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\nu/2)\sqrt{(\nu-2)\pi}} \left(1 + \frac{\eta_t^2}{\nu-2}\right)^{-(\nu+1)/2}, \quad (39)$$

and

$$f(\eta_t; p) = \frac{\lambda p}{2^{1/p+1}\Gamma(1/p)} \exp\left\{-\frac{|\lambda \eta_t|^p}{2}\right\},\tag{40}$$

where $\lambda = 2^{1/p} \sqrt{\Gamma(3/p)/\Gamma(1/p)}$.

Covariance Stationarity and Unconditional Variance for General Innovation Distributions

• In the GARCH(p,q),

$$\epsilon_t = \eta_t \sigma_t \tag{41}$$

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2,$$

to find the unconditional variance, we take expectations on both sides,

$$\mathsf{E}(\sigma_t^2) = \omega + \sum_{i=1}^q \alpha_i \mathsf{E}(\epsilon_{t-i}^2) + \sum_{i=1}^p \beta_i \mathsf{E}(\sigma_{t-i}^2).$$

• If the innovations η_t in (41) have unit variance, $\mathsf{E}(\eta_t^2) = 1$, it follows that $\mathsf{E}(\epsilon_t^2) = \mathsf{E}(\eta_t^2 \sigma_t^2) = \mathsf{E}(\eta_t^2) \mathsf{E}(\sigma_t^2) = \mathsf{E}(\sigma_t^2)$, and so

$$\mathsf{E}(\epsilon_t^2) = \mathsf{E}(\sigma_t^2) = \frac{\omega}{1 - \sum_i \alpha_i - \sum_i \beta_i},\tag{42}$$

provided the second-order stationarity condition

$$\sum_{i} \alpha_i + \sum_{i} \beta_i < 1 \tag{43}$$

is satisfied.

- However, non-normal densities are not always applied in standardized (unit-variance) form.
- ullet For example, the "conventional" Student's t is also often used and has density

$$f(\eta_t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\nu/2)\sqrt{\nu\pi}} \left(1 + \frac{\eta_t^2}{\nu}\right)^{-(\nu+1)/2},$$

which has (for $\nu > 2$)

$$\kappa_2 := \mathsf{E}(\eta_t^2) = \frac{\nu}{\nu - 2}.$$

• If, in general, $\mathsf{E}(\eta_t^2) = \kappa_2$, then (43) and (42) become

$$\kappa_2 \sum_i \alpha_i + \sum_i \beta_i < 1,$$

and

$$\mathsf{E}(\epsilon_t^2) = \kappa_2 \mathsf{E}(\sigma_t^2) = \frac{\kappa_2 \omega}{1 - \kappa_2 \sum_i \alpha_i - \sum_i \beta_i},$$

respectively.

Table 3: GARCH(1,1) estimates for various stock return series, January 1990 to October 2009

		Stud	ent's t		
Series	$\widehat{\omega}$	\widehat{lpha}_1	$\widehat{\beta}_1$	$\widehat{ u}$	$\widehat{\alpha}_1 + \widehat{\beta}_1$
CAC 40	$0.0197 \atop (0.0048)$	$\underset{(0.0081)}{0.0751}$	$0.9150 \\ (0.0089)$	$11.2269\atop{(1.4925)}$	0.9902
DAX	$0.0154 \ (0.0039)$	$\underset{(0.0092)}{0.0852}$	$\underset{(0.0093)}{0.9096}$	$\underset{(0.8904)}{8.6085}$	0.9948
FTSE	$\begin{bmatrix} 0.0103 \\ \scriptscriptstyle (0.0025) \end{bmatrix}$	$\underset{(0.0084)}{0.0797}$	$\underset{(0.0090)}{0.9122}$	$13.2518 \atop (2.0502)$	0.9918
		C	SED		
Series	$\widehat{\omega}$	\widehat{lpha}_1	$\widehat{\beta}_1$	\widehat{p}	$\widehat{\alpha}_1 + \widehat{\beta}_1$
CAC 40	$0.0240 \atop (0.0054)$	$0.0787 \atop (0.0087)$	$0.9090 \\ (0.0098)$	1.5772 (0.0430)	0.9878
DAX	$0.0226 \atop (0.0048)$	$\underset{(0.0099)}{0.0882}$	$\underset{(0.0103)}{0.9027}$	$\underset{(0.0364)}{1.4412}$	0.9909
FTSE	$\begin{array}{c c} 0.0110 \\ (0.0026) \end{array}$	$\underset{(0.0086)}{0.0825}$	$\underset{(0.0092)}{0.9089}$	$1.6790 \atop (0.0472)$	0.9914

Table 4: Maximized log-likelihood values

	CAC 40	DAX	FTSE
Normal	-8088.5	-8180.9	-6798.8
Student's t	-8032.5	-8048.2	− 6768.2
GED	-8048.6	-8085.1	- 6779.0

Differences in log-likelihood

Student's t -Normal	56.0047	132.6939	30.6056	
GED-Normal	39.8959	95.7972	19.8580	

IGARCH and **EWMA**

• The finding that often $\alpha_1 + \beta_1 \approx 1$ has led to the suggestion of imposing the restriction

$$\alpha_1 + \beta_1 = 1,$$

which is referred to as IGARCH(1,1) (integrated GARCH), since there is a "unit root" in the GARCH polynomial.

- However, the analogy to integrated (unit root) processes is rather weak.
- In particular, IGARCH(1,1) processes are (strictly) stationary, although their second moment does not exist.
- Nelson (1990) has shown that the GARCH(1,1) is strictly stationary if

$$\mathsf{E}[\log(\alpha_1\eta_t^2 + \beta_1)] < 0.$$

• By Jensen's inequality, for the IGARCH(1,1),

$$\mathsf{E}[\log(\alpha_1 \eta_t^2 + \beta_1)] < \log \mathsf{E}(\alpha_1 \eta_t^2 + \beta_1) = \log 1 = 0.$$

- $\alpha_1 + \beta_1$ may be even larger than unity. For example, the ARCH(1) process with $\alpha_1 = 3$ is stationary, although extremely fat—tailed.
- A special case of an IGARCH model (with zero intercept) is the exponentially weighted moving average (EWMA) popularized by RiskMetrics of J.P. Morgan, which is

$$\sigma_t^2 = (1 - \lambda) \sum_{i=0}^{\infty} \lambda^i \epsilon_{t-1-i}^2 = (1 - \lambda) \epsilon_{t-1}^2 + \lambda \sigma_{t-1}^2, \quad 0 < \lambda < 1, \quad (44)$$

with λ fixed at 0.94 for daily data.

 IGARCH and EWMA tend to be inferior in empirical applications, however.

Backtesting Predictive Densities of Nonlinear Time Series Models

• In the Gaussian GARCH model, series

$$\widehat{\eta}_t = \frac{\widehat{\epsilon}_t}{\widehat{\sigma}_t}, \quad t = 1, \dots, T,$$
(45)

should mimic an iid standard normally distributed series.

- Similarly, in a t or GED GARCH model, (45) should behave like an iid standard t or GED sequence.
- A frequently used technique to generate iid standard normal residuals is as follows.

Calculate the series

$$u_t = F(r_t|I_{t-1}), \quad t = 1, \dots, T,$$
 (46)

where $F(\cdot|I_{t-1})$ is the *conditional* cumulative distribution function (cdf) of the return r_t implied by the model under consideration, based on information up to time t-1, I_{t-1} .

• For example, in a GARCH model with normal innovations, $F(\cdot|I_{t-1})$ is the normal cdf,

$$F(r|I_{t-1}) = \Phi\left(\frac{r_t - \widehat{\mu}_t}{\widehat{\sigma}_t}\right) = \frac{1}{\sqrt{2\pi}\widehat{\sigma}_t} \int_{-\infty}^r \exp\left\{-\frac{(\xi - \widehat{\mu}_t)^2}{2\widehat{\sigma}_t^2}\right\} d\xi, \quad (47)$$

where Φ is the standard normal cdf and $\widehat{\mu}_t$ and $\widehat{\sigma}_t^2$ are the conditional mean and variance implied by the estimated model, respectively.

 Computer programs do these calculations for most of the commonly used distributions.

- If the model is correctly specified, (46) is a series of iid uniform(0,1) variables. This is also known as the *Rosenblatt* transform.
- Subsequently, apply a second transformation, namely,

$$\{z_t\} = \Phi^{-1}(\{u_t\}),\tag{48}$$

where Φ^{-1} is the inverse of the standard normal cdf.

• For example,

$$\Phi^{-1}(.025) = -1.96, \quad \Phi^{-1}(.05) = -1.6449, \quad \Phi^{-1}(.5) = 0.$$

- If the model is correctly specified, (48) is a sequence of iid standard normal variables.
- This allows the use of standard and simple normality tests for correct specification of (conditional) skewness and kurtosis.

ullet Let \widehat{s} and $\widehat{\kappa}$ be the sample skewness and kurtosis, respectively, i.e.,

$$\widehat{s} = \frac{T^{-1} \sum_{t} (z_{t} - \bar{z})^{3}}{\left\{ T^{-1} \sum_{t} (z_{t} - \bar{z})^{2} \right\}^{3/2}}, \quad \widehat{\kappa} = \frac{T^{-1} \sum_{t} (z_{t} - \bar{z})^{4}}{\left\{ T^{-1} \sum_{t} (z_{t} - \bar{z})^{2} \right\}^{2}}.$$

• Under normality,

$$\widehat{s} \stackrel{asy}{\sim} \text{Normal}(0, 6/T), \quad \widehat{\kappa} \stackrel{asy}{\sim} \text{Normal}(3, 24/T),$$
 (49)

SO

$$T\hat{s}^2/6 \stackrel{asy}{\sim} \chi^2(1), \quad T(\hat{\kappa} - 3)^2/24 \stackrel{asy}{\sim} \chi^2(1),$$
 (50)

and the Jarque-Bera test

$$JB = T\hat{s}^2/6 + T(\hat{\kappa} - 3)^2/24 \stackrel{asy}{\sim} \chi^2(2).$$
 (51)

 We can also test for absence of autocorrelation, zero mean and unit variance by means of likelihood ratio tests based on the Gaussian likelihood.

Economic Evaluation: Value—at—Risk (VaR)

- Both in industry and in academia, Value—at—Risk (VaR) is a widely employed measure to characterize the downside risk of a financial position.
- The $VaR(\xi)$
 - with shortfall probability ξ (typically a small number, e.g., $\xi=0.01$ or 0.05)

for a given horizon (typical a day or a week) is defined such that

- over the next period (e.g., day or week), the probability that the portfolio suffers a loss larger than the $VaR(\xi)$ is $100 \times \xi\%$.
- ullet Equivalently, with probability $1-\xi$, our loss will not exceed the VaR(ξ).
- To be more precise, consider a time series of portfolio returns, r_t , and an associated series of ex–ante VaR measures with shortfall probability ξ , VaR $_t(\xi)$.

ullet The VaR $_t(\xi)$ implied by a model ${\mathcal M}$ is defined by

$$F_{t-1}^{\mathcal{M}}(\mathsf{VaR}_t(\xi)) = \xi, \tag{52}$$

where $F_{t-1}^{\mathcal{M}}$ is the (conditional) cumulative distribution function (cdf) derived from model \mathcal{M} using the information up to time t-1.

- Statistically, it is the ξ -quantile of the conditional return distribution.
- Under conditional normality, we have

$$VaR_t(\xi) = \mu_t + z_{\xi}\sigma_t,$$

where μ_t is the conditional mean of the return, z_{ξ} is the ξ -quantile of the standard normal distribution (e.g., $z_{0.01} = -2.3263$), and σ_t is the conditional standard deviation.

• A violation or hit is said to occur at time t if

$$r_t < \mathsf{VaR}_t(\xi).$$

- For a nominal VaR shortfall probability ξ and a correctly specified VaR model, we expect $100 \times \xi\%$ of the observed return values to be violations (shortfalls).
- To test the models' suitability for calculating accurate ex—ante VaR measures, define the binary sequence

$$I_t = \begin{cases} 1, & \text{if } r_t < \mathsf{VaR}_t, \\ 0, & \text{if } r_t \ge \mathsf{VaR}_t. \end{cases}$$
 (53)

Then the empirical relative shortfall frequency is

$$\widehat{\xi} = x/T$$
, where $x = \sum_{t=1}^{T} I_t$ (54)

is the number of observed violations, and T is the number of forecasts evaluated.

• If $\widehat{\xi}$ is significantly higher (less) than ξ , then the model under study tends to underestimate (overestimate) the risk of the financial position.

• If the model is correctly specified, the hit sequence is a sample of size T from the Bernoulli distribution with parameter ξ , with pdf

$$p(I_t;\xi) = \xi^{I_t} (1-\xi)^{1-I_t}, \tag{55}$$

and the likelihood of the sample is

$$L(\xi) = \xi^{\sum_{t=1}^{T} I_t} (1 - \xi)^{T - \sum_{t=1}^{T} I_t} = \xi^x (1 - \xi)^{T - x},$$
 (56)

with log-likelihood

$$\log L(\xi) = x \log \xi + (T - x) \log(1 - \xi). \tag{57}$$

• The maximum likelihood estimator is obtained via

$$\frac{\partial \log L(\xi)}{\partial \xi} = \frac{x}{\xi} - \frac{T - x}{1 - \xi} = 0 \Rightarrow \widehat{\xi} = \frac{x}{T}.$$
 (58)

The likelihood ratio test statistic is two times the unrestricted log—likelihood,

$$\log L(\widehat{\xi}) = x \log(x/T) + (T - x) \log\{(T - x)/x\},$$
 (59)

minus the log-likelihood under the null that the actual shortfall probability is equal to the nominal shortfall probability ξ ,

$$\log L(\widehat{\xi}) = x \log \xi + (T - x) \log(1 - \xi). \tag{60}$$

The likelihood ratio test (LRT) statistic is

$$LRT = -2\{x \log(\xi/\widehat{\xi}) + (T - x) \log[(1 - \xi)/(1 - \widehat{\xi})]\} \stackrel{asy}{\sim} \chi^{2}(1).$$
 (61)

One-step-ahead predictive densities

- First estimate the models over the (approximately) first ten years of data, i.e., the first 2500 observations.
- Then update the parameters (approximately) every month (i.e., 20 trading days) employing a moving window of data, i.e., using the most recent 2500 observations in the sample.
- We get, for each model and series, 2480 one—step—ahead predictive densities for the period January 2000 to October 2009.

Table 5: GARCH(1,1) density forecasts based on (48)

Iau	ne 3. GANCH	(1,1) den	isity forecast	s based on	(40)
		Gaussian (GARCH(1,1)		
Series	mean	var.	skewness	kurtosis	JB
CAC 40	-0.0562^{***}	1.0229	-0.304^{***}	4.014^{***}	144.5^{***}
DAX	-0.0567^{***}	1.0249	-0.317^{***}	3.945^{***}	133.7***
FTSE	-0.0517^{**}	1.0221	-0.354^{***}	3.746***	109.3***
		GED GA	ARCH(1,1)		
Series	mean	var.	skewness	kurtosis	JB
CAC 40	-0.0569^{***}	1.0162	-0.221^{***}	3.327***	31.20***
DAX	-0.0643^{***}	1.0152	-0.224^{***}	3.184^*	24.17^{***}
FTSE	-0.0538^{***}	1.0164	-0.275^{***}	3.238**	37.06***
		Student's t	GARCH(1,1)		
Series	mean	var.	skewness	kurtosis	JB
CAC 40	-0.0584^{***}	1.0121	-0.185^{***}	3.097	15.11***
DAX	-0.0636^{***}	1.0138	-0.187^{***}	2.983	14.55^{***}

Asterisks *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively.

 -0.0540^{***} 1.0144 -0.240^{***} 3.070

Table 6: GARCH(1,1) Value–at–Risk measures, reported is $100 \times \widehat{\xi}$

	C	Saussian GA	RCH(1,1)				
Series	$\xi = 0.001$	0.0025	0.005	0.01	0.025	0.05	0.1
CAC 40	0.36***	0.52**	0.89**	1.69***	3.83***	6.33***	11.01*
DAX	0.28^{**}	0.65^{***}	1.01***	1.45^{**}	3.79^{***}	6.98^{***}	11.73***
FTSE	0.60***	0.77***	1.25***	2.02***	3.95***	6.37***	10.56
		GED GAR	CH(1,1)				
Series	0.001	0.0025	0.005	0.01	0.025	0.05	0.1
CAC 40	0.32***	0.36	0.60	1.17	3.67^{***}	6.25^{***}	11.33**
DAX	0.20	0.28	0.65	1.13	3.31**	6.98^{***}	12.50^{***}
FTSE	0.28**	0.65***	0.97***	1.57***	3.67***	6.37***	11.01*
	St	udent's $t \; G$	ARCH(1,1)				
Series	0.001	0.0025	0.005	0.01	0.025	0.05	0.1
CAC 40	0.20	0.36	0.56	1.17	3.75***	6.49^{***}	11.45**
DAX	0.12	0.28	0.65	1.13	3.43***	7.10^{***}	12.54^{***}
FTSE	0.24^*	0.65***	0.85^{**}	1.61***	3.83***	6.57***	11.41**

Asterisks *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively, based on the test (61).

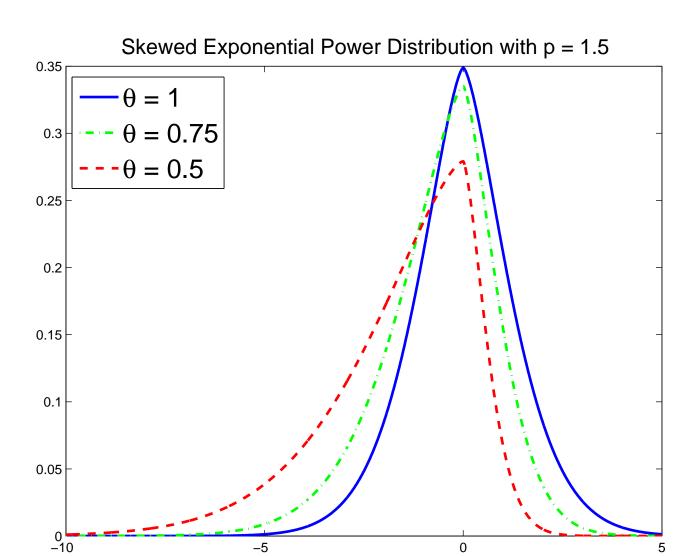
Conditional Skewness

- The results suggest that the innovations, in addition to being leptokurtic, are also skewed, which needs to be taken into account to deliver reliable density forecasts.
- ullet Asymmetric versions of the GED and the t distributions have been proposed.
- Regarding the GED, the skewed exponential power (SEP) distribution of Fernandez, Osiewalski, and Steel (1995) has density

$$f(z; p, \theta) = \frac{\theta}{1 + \theta^2} \frac{p}{2^{1/p} \Gamma(1/p)} \begin{cases} \exp\left\{-\frac{1}{2} (|z|\theta)^p\right\} & \text{if } z < 0\\ \exp\left\{-\frac{1}{2} \left(\frac{z}{\theta}\right)^p\right\} & \text{if } z \ge 0, \end{cases}$$
(62)

where $\theta, p > 0$.

• This distribution nests the normal for $\theta=1$ and p=2. For $\theta<1(\theta>1)$, the density is skewed to the left (right), and is fat-tailed for p<2.



Various skewed versions of the Student's t exist.

• A t version of (62) is the skewed t distribution proposed by Mittnik and Paolella (2000), which has density

$$f(z; \nu, p, \theta) = \frac{\theta}{1 + \theta^2} \frac{p}{\nu^{1/p} B(\nu, 1/p)} \begin{cases} \left(1 + \frac{(|z|\theta)^p}{\nu}\right)^{-(\nu+1/p)} & \text{if } z < 0\\ \left(1 + \frac{(z/\theta)^p}{\nu}\right)^{-(\nu+1/p)} & \text{if } z \ge 0, \end{cases}$$
(63)

where $\nu, p, \theta > 0$, and $B(\cdot, \cdot)$ is the beta function.

• In view of our earlier results that the (symmetric) t was somewhat better than the (symmetric) GED, we concentrate on the skewed t distribution (63).

Table 7: GARCH(1,1) estimates for various stock return series, January 1990 to October 2009

		Skewed S	tudent's $\it t$			
Series	$\widehat{\omega}$	\widehat{lpha}_1	\widehat{eta}_1	$\widehat{ u}$	$\widehat{ heta}$	\widehat{p}
CAC 40	$0.0302 \atop (0.0078)$	$0.1307 \atop (0.0142)$	$0.9140 \\ {\scriptstyle (0.0087)}$	4.2942 (1.1377)	$\underset{(0.0151)}{0.9025}$	$2.1988 \atop (0.1483)$
DAX	$0.0237 \atop (0.0064)$	$0.1394 \atop (0.0153)$	$\underset{(0.0092)}{0.9076}$	$3.2897 \atop (0.6919)$	$\underset{(0.0143)}{0.9005}$	$\frac{2.2424}{(0.1494)}$
FTSE	$\begin{array}{c c} 0.0167 \\ (0.0043) \end{array}$	$\underset{(0.0150)}{0.1431}$	$0.9119 \atop (0.0085)$	$3.8977 \atop (1.0776)$	$\underset{(0.0148)}{0.9100}$	$2.3275 \atop (0.1723)$

• All the $\widehat{\theta}$ s significantly different from 1.

Table 8: Maximized log-likelihood values

	CAC 40	DAX	FTSE
Normal	-8088.5	-8180.9	-6798.8
Student's t	-8032.5	-8048.2	− 6768.2
GED	-8048.6	-8085.1	- 6779.0
skewed t	-8013.1	-8024.8	- 6749.3

Differences in log-likelihood

	_			
Student's t – Normal	56.0047	132.6939	30.6056	
GED – Normal	39.8959	95.7972	19.8580	
skew $t - t$	19.4212	23.3951	18.9364	

• The 1% critical value of a $\chi^2(2)$ distribution is 9.2103.

Table 9: GARCH(1,1) density forecasts based on (48) skewed t GARCH(1,1)

Series skewness kurtosis JB mean var. CAC 40 2.163 -0.0345^* 1.0042-0.0363.126DAX 0.464-0.02411.0131 -0.0293.035

Asterisks *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively.

 -0.088^*

3.067

3.630

1.0126

FTSE

-0.0189

Returns and 1% VaR implied by Skewed-t GARCH(1,1)

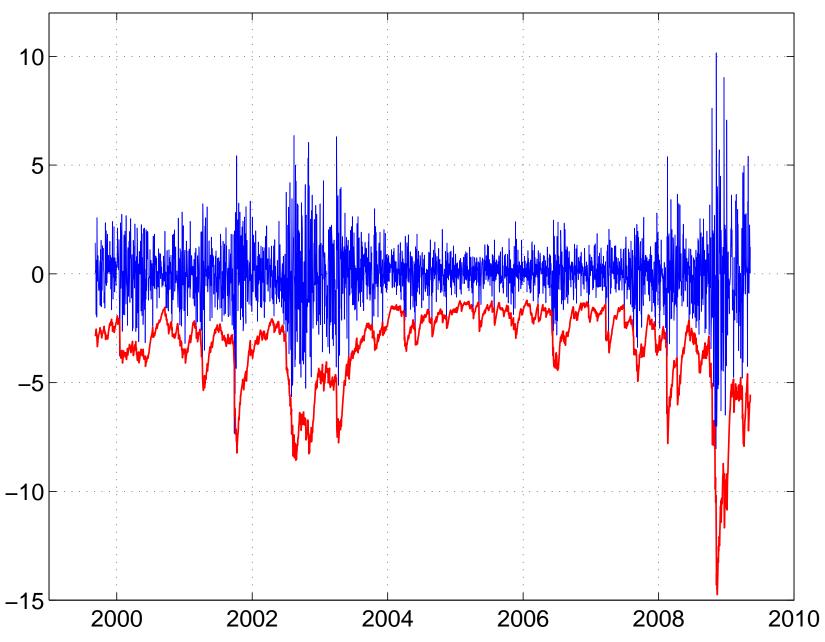


Table 10: GARCH(1,1) Value–at–Risk measures, reported is $100 imes \widehat{\xi}$

	TO. GATTETT	(-,-)					3		
	sk	ewed $t\ GAI$	RCH(1,1)						
Series	$\xi = 0.001$	0.0025	0.005	0.01	0.025	0.05	0.1		
CAC 40	0.16	0.32	0.40	0.85	2.74	5.56	10.93		
DAX	0.12	0.24	0.40	0.89	2.58	6.25^{***}	11.61***		
FTSE	0.24^*	0.24	0.65	1.29	3.15^{**}	5.93**	10.12		
Student's t GARCH(1,1)									
-	Stu	dent's t GA	ARCH(1,1)						
Series	Stu 0.001	dent's t GA 0.0025	ARCH(1,1) 0.005	0.01	0.025	0.05	0.1		
Series CAC 40	I		,		0.025 3.75***	0.05 6.49***	0.1 11.45**		
	0.001	0.0025	0.005	0.01					

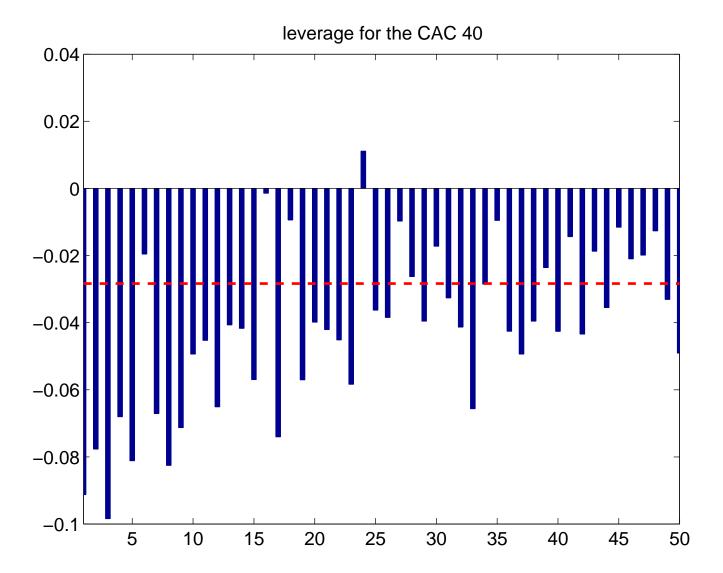
Asterisks *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively, based on the test (61).

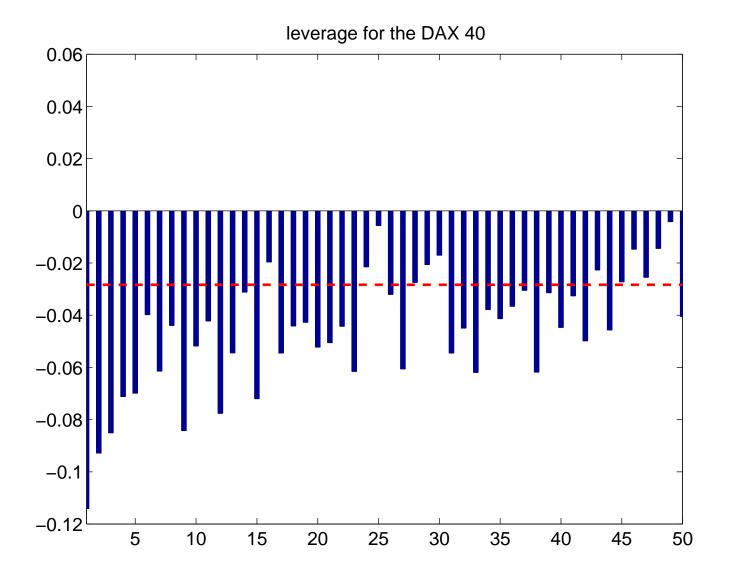
• Summarizing, both conditional skewness and kurtosis may be important and can considerably improve conditional predictive densities.

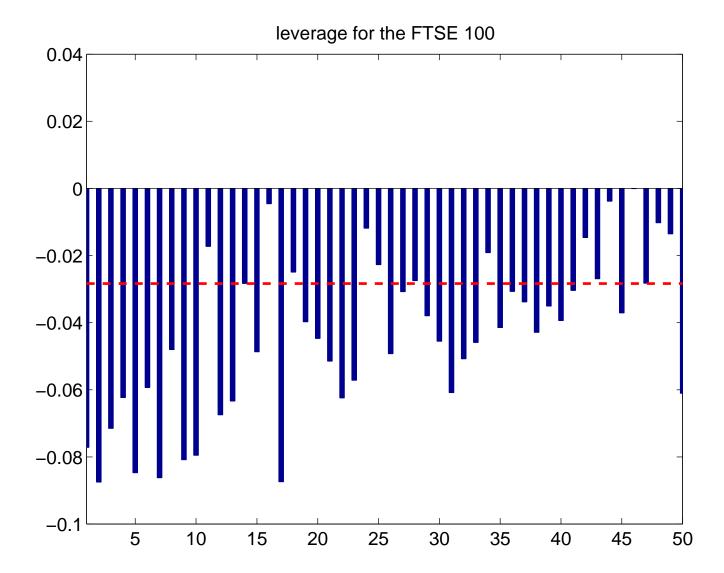
Asymmetric GARCH Models

- The basic GARCH model considered so far assumes that the conditional variance σ_t^2 depends only on the *magnitude* and not on the *sign* of past shocks.
- However, stock market variance tends to react more strongly to bad news than to good news, which is often referred to as the *leverage effect*.
- ullet To illustrate, we may define the leverage effect at lag au as

$$L(\tau) = \operatorname{Corr}(\epsilon_{t-\tau}, |\epsilon_t|). \tag{64}$$







Asymmetric GARCH Models I

• The first model that has been put forward is the *Asymmetric GARCH* (AGARCH) of Engle (1990), which specifies the conditional variance as

$$\sigma_t^2 = \omega + \alpha (\epsilon_{t-1} - \theta)^2 + \beta \sigma_{t-1}^2$$
 (65)

$$= \omega + \alpha \theta^2 + \alpha \epsilon_{t-1}^2 - 2\alpha \theta \epsilon_{t-1} + \beta \sigma_{t-1}^2. \tag{66}$$

- In model (65), the conditional variance, as a function of ϵ_{t-1} , has its minimum at θ rather than at zero.
- \bullet Thus, if $\theta > 0$, negative shocks will have a greater impact on the conditional variance than positive shocks of the same magnitude.
- (66) shows that, if $\alpha + \beta < 1$, the unconditional variance of this process is

$$\mathsf{E}(\sigma_t^2) = \frac{\omega + \alpha \theta^2}{1 - \alpha - \beta}.\tag{67}$$

Asymmetric GARCH Models II

• The asymmetric GARCH model proposed by Glosten, Jagannathan and Runkle (1993), referred to as *GJR-GARCH*, models the conditional variance as

$$\sigma_t^2 = \omega + (\alpha + \theta S_{t-1})\epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2,$$

where

$$S_{t-1} = \begin{cases} 1 & \text{if } \epsilon_{t-1} < 0 \\ 0 & \text{if } \epsilon_{t-1} \ge 0 \end{cases}$$

- Clearly $\theta > 0$ implies that the change in the next period's variance is negatively correlated with today's return.
- If the innovation density is symmetric (e.g., normal or Student's t), the unconditional variance is

$$\mathsf{E}(\sigma_t^2) = \frac{\omega}{1 - \alpha - \theta/2 - \beta}.$$

News Impact Curve

- To analyze the asymmetric response of the variance in different GARCH specifications, Engle and Ng (1993) defined the new impact curve (NIC).
- This is defined as the functional relationship

$$\sigma_t^2 = \sigma_t^2(\epsilon_{t-1}),$$

with all lagged variances evaluated at their unconditional values.

 \bullet For example, for the standard *symmetric* GARCH(1,1) model, we have

$$\sigma_t^2(\epsilon_{t-1}) = A + \alpha \epsilon_{t-1}^2,$$

where

$$A = \omega + \beta \sigma^2, \quad \sigma^2 = \frac{\omega}{1 - \alpha - \beta}.$$

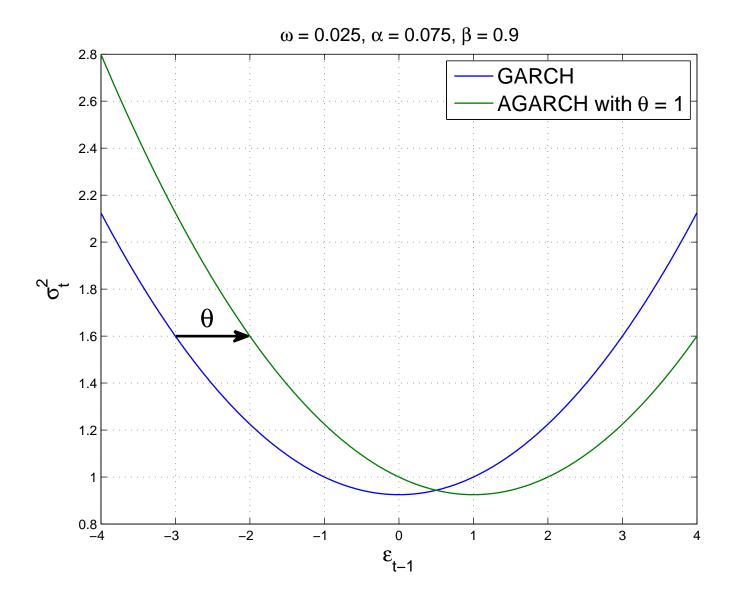
• This is a symmetric function of ϵ_{t-1} .

- Asymmetries may be introduced in various ways: Compared to the standard GARCH, we can change either the position of the slope of the NIC (or both).
- For example, the AGARCH captures asymmetry by allowing its NIC to be centered at a positive ϵ_{t-1} , since

$$\sigma_t^2(\epsilon_{t-1}) = A + \alpha(\epsilon_{t-1} - \theta)^2,$$

where

$$A = \omega + \beta \sigma^2, \quad \sigma^2 = \frac{\omega + \alpha \theta^2}{1 - \alpha - \beta}.$$



• The GJR captures the asymmetry in the impact of news on volatility via a steeper *slope* for negative than for positive shocks, i.e.,

$$\sigma_t^2(\epsilon_{t-1}) = A + \begin{cases} (\alpha + \theta)\epsilon_{t-1}^2 & \text{if } \epsilon_{t-1} < 0\\ \alpha \epsilon_{t-1}^2 & \text{if } \epsilon_{t-1} \ge 0, \end{cases}$$

but the NIC of the GJR is still centered at zero, i.e., $\sigma_t^2(\epsilon_{t-1})$ is minimized for $\epsilon_{t-1}=0$.

- There exist further variants of asymmetric GARCH specifications, e.g., the popular EGARCH (exponential GARCH).
- The estimates reported on the following pages are based on normal innovations; clearly nonnormal distributions allowing for fat tails and asymmetries would be considered in practice.

Table 11: Asymmetric GARCH(1,1) estimates for various stock return series, January 1990 to October 2009

AGARCH (Gaussian)					
Series	$\widehat{\omega}$	\widehat{lpha}	\widehat{eta}	$\widehat{ heta}$	
CAC 40	$0.0000 \ (0.0073)$	$\underset{(0.0069)}{0.0621}$	$0.9187 \atop (0.0084)$	$\underset{(0.0954)}{0.7361}$	
DAX	0.0087 (0.0069)	$0.0709 \atop (0.0073)$	$0.9081 \atop (0.0088)$	$\underset{(0.0829)}{0.6524}$	
FTSE	$0.0000 \\ (0.0036)$	$\underset{(0.0071)}{0.0673}$	$\underset{(0.0079)}{0.9189}$	$\underset{(0.0664)}{0.4693}$	
GJR-GARCH (Gaussian)					
Series	$\widehat{\omega}$	\widehat{lpha}	\widehat{eta}	$\widehat{ heta}$	
CAC 40	0.0297 (0.0050)	$0.0157 \atop (0.0067)$	$0.9184 \atop (0.0086)$	$0.0959 \atop (0.0109)$	
DAX	$\begin{bmatrix} 0.0364 \\ \scriptscriptstyle (0.0053) \end{bmatrix}$	$\underset{(0.0072)}{0.0220}$	$\underset{(0.0093)}{0.9042}$	$\underset{(0.0126)}{0.1049}$	
FTSE	$\begin{bmatrix} 0.0119\\ \scriptscriptstyle (0.0021) \end{bmatrix}$	$\underset{(0.0064)}{0.0187}$	$\underset{(0.0073)}{0.9227}$	$\underset{(0.0104)}{0.0943}$	

Table 12: Maximized log-likelihood values

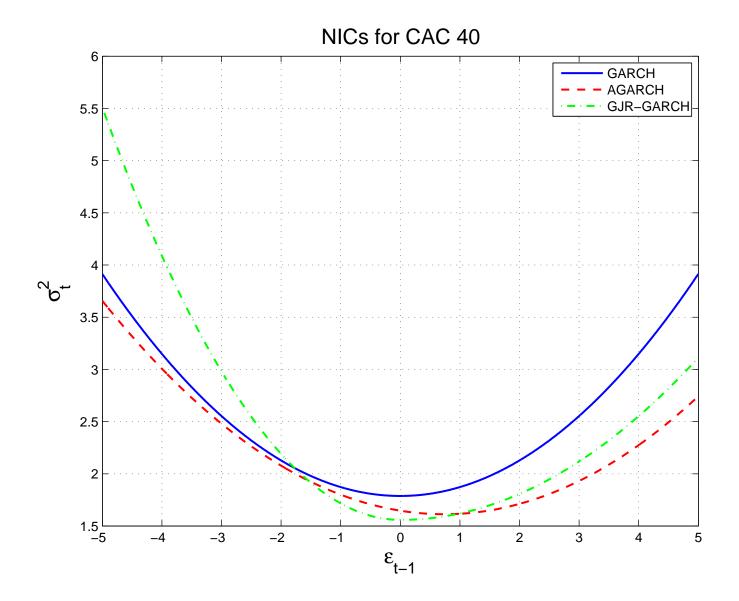
	CAC 40	DAX	FTSE
GARCH	-8088.5	-8180.9	-6798.8
AGARCH	-8045.0	-8141.8	- 6761.2
GJR-GARCH	-8043.8	-8138.5	- 6755.2

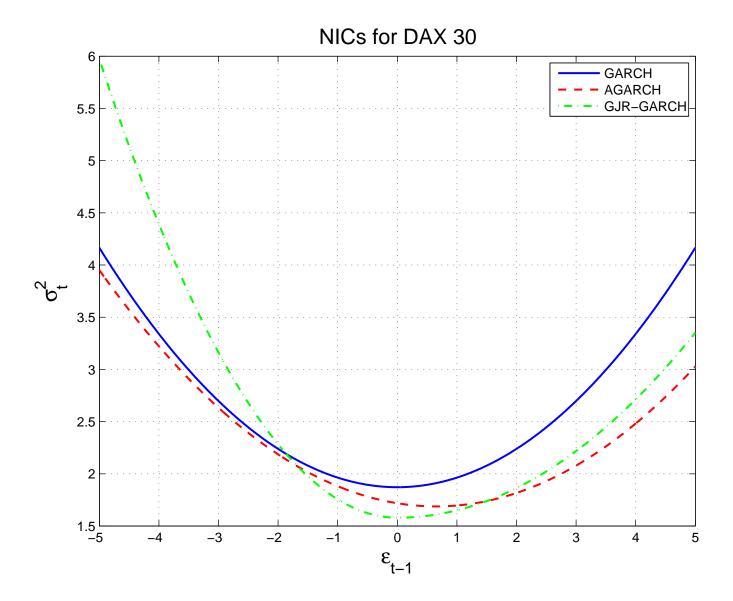
Differences in log-likelihood

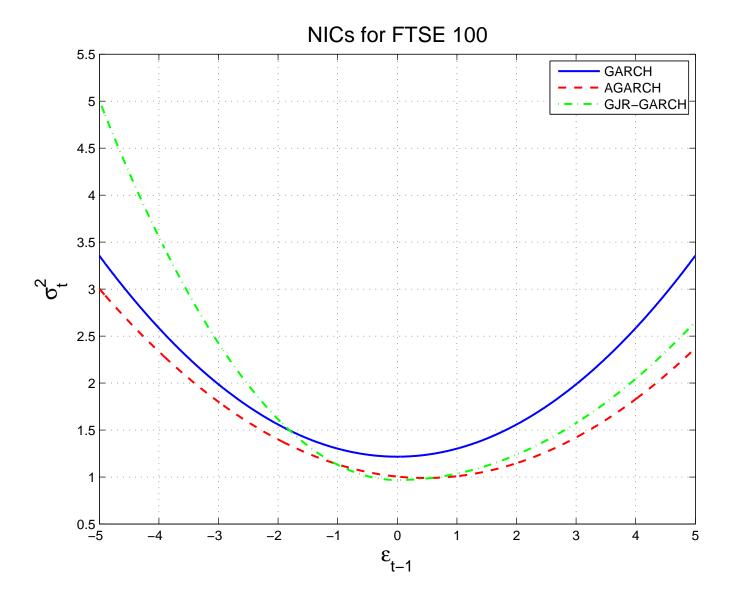
AGARCH – GARCH	43.5299	39.0356	37.6334
GJR – GARCH	44.6940	42.3483	43.6754

Table 13: Unconditional variances, $\mathsf{E}(\sigma_t^2)$

	CAC 40	DAX	FTSE
data	2.0016	2.2133	1.3231
GARCH	1.9542	2.0610	1.3306
AGARCH	1.7559	1.8493	1.0772
GJR-GARCH	1.6649	1.7070	1.0370







ARCH-M

- In the finance literature, a link is often made between the expected return and the risk of an asset.
- Investors are willing to hold risky assets only if their expected return compensate for the risk.
- A model that incorporates this link is the GARCH-in-mean or GARCH-M model, which can be written as

$$r_t = c + \delta g(\sigma_t^2) + \epsilon_t,$$

where ϵ_t is a GARCH error process, and g is a known function such as $g(\sigma_t^2) = \sigma_t^2$, $g(\sigma_t^2) = \sigma_t$, or $g(\sigma_t^2) = \log(\sigma_t^2)$.

- If $\delta > 0$ and g is monotonically increasing, then the term $\delta g(\sigma_t^2)$ can be interpreted as a *risk premium* that increases expected returns if conditional volatility σ_t^2 is high.
- In practice $g(\sigma_t^2) = \sigma_t$ appears to be the preferred specification.