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Several Stylized Facts

• Returns usually show no or only little autocorrelation.

• Volatility appears to be autocorrelated (volatility clusters).

• Normality is rejected in favor of a leptokurtic (fat–tailed) distribution.
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Volatility Modeling and the Stylized Facts

• Consider the following model for returns rt,

rt = µt + ϵt (1)

ϵt = ηtσt, ηt
iid∼ N(0, 1),

where we assume that the innovation sequence ηt is independent of σt.

• µt in (1) is the conditional mean of rt conditional on the information
up to time t− 1. This may, for example, be constant or described by a
low–order ARMA process.

• We are interested in the error term described by the second line of (1).

• If σ2
t depends on information available at time t − 1, then σ2

t is the
conditional variance of ϵt (and thus also rt).

• Denote the information available up to time t by It; It typically consists
of the past history of the process, {ϵs : s ≤ t}.
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• Then we can also write

ϵt|It−1 ∼ N(0, σ2
t ), (2)

i.e., ϵt is conditionally normally distributed with variance σ2
t .

• However, if the conditional variance is time–varying (which is the case
we are interested in), the unconditional distribution of ϵt will not be
normal.

• To illustrate, consider the marginal kurtosis of ϵt, assuming ϵt is stationary
with finite fourth moment,

kurtosis(ϵt) =
E(ϵ4t )

E2(ϵ2t )
=

E(η4tσ
4
t )

E2(η2tσ
2
t )

=
E(η4t )E(σ

4
t )

E2(η2t )E
2(σ2

t )︸ ︷︷ ︸
Independence of ηt and σ

2
t

=
E(η4t )

E2(η2t )︸ ︷︷ ︸
=3

E(σ4
t )

E2(σ2
t )
> 3, (3)
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since
E(σ4

t ) > E2(σ2
t ) (E(X2) > E2(X)). (4)

• An interpretation of (3) results from noting that

E(σ4
t )

E2(σ2
t )

= 1 +
E(σ4

t )− E2(σ2
t )

E2(σ2
t )

= 1 +
Var(σ2

t )

E2(σ2
t )
.

• Thus, for a given level of the unconditional variance E(σ2
t ) = E(ϵ2t ), the

kurtosis of the marginal distribution of ϵt is increasing in the variability
of the conditional variance.

• If Var(σ2
t ) is large, then σ

2
t will often be considerably smaller (larger) then

E(σ2
t ), giving rise to high peaks (thick tails) of the marginal distribution,

respectively.
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• Thus, even with normal innovations (conditional normality), time–varying
conditional volatility may account for at least part of the leptokurtosis
observed in financial return series.

• A further property of the error process is uncorrelatedness,

E(ϵtϵt−τ) = E(ηtηt−τσtσt−τ) = E(ηt)︸ ︷︷ ︸
=0

E(ηt−τσtσt−τ) = 0.

• Absolute values and squares can be correlated, however, depending on
the specification for the conditional variance process {σ2

t }.

• Thus, at least in principle, a process of the form (1) is capable of
reproducing several of the properties typically detected in financial
returns.
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The ARCH Process

• Engle (1982) introduced the class of autorregressive conditional
heteroskedastic (ARCH) models,1 where (1) is specified as

rt = µt + ϵt

ϵt = ηtσt, ηt
iid∼ N(0, 1),

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i, (5)

ω > 0, αi ≥ 0, i = 1, . . . , q,

which is referred to as ARCH(q).

• Conditions (6) make sure that σ2
t may not become negative.

1Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom
Inflation. Econometrica 50, 987-1007.
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• σ2
t in (5) is the conditional variance of ϵt, given It−1.

• To find the unconditional variance, take expectations in (5),

E(σ2
t ) = E(ϵ2t ) = ω +

q∑
i=1

αiE(ϵ
2
t−i),

so that
E(σ2

t ) = E(ϵ2t ) =
ω

1− α1 − α2 − · · · − αq
.

• This makes sense only if
q∑

i=1

αi < 1, (6)

which turns out to be the condition for the finiteness of the variance in
the ARCH(q) model, and is often referred to as the stationarity condition.
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• If the covariance stationarity condition (6) is not satisfied, this does not
imply that the process is not (strictly) stationary.

• It means that the unconditional distribution has no finite second moment.

• It has been shown that the ARCH process (even with normal innovations)
generates marginal (unconditional) distributions with tails decaying as a
power law, i.e., for some γ > 0,

Pr(|ϵt| > x) ≃ cx−γ, as x→ ∞,

so that moments of ϵt exist only of order smaller than γ.

• It may happen that the coefficients of the ARCH equation are so large
that γ < 2.

• The (weaker) condition for strict stationarity will be briefly considered
when discussing generalized ARCH (GARCH) models.
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• Several further properties of the model can best be illustrated by means
of the ARCH(1) specification, given by

σ2
t = ω + α1ϵ

2
t−1. (7)

• We first calculate the fourth moment of the process,

E(ϵ4t ) = E(η4tσ
4
t ) = E(η4t )E(σ

4
t ) = 3E(σ4

t ). (8)

• Squaring (7),

σ4
t = (ω + α1ϵ

2
t−1)

2 = ω2 + 2ωα1ϵ
2
t−1 + α2

1ϵ
4
t−1

E(σ4
t ) = ω2 + 2ωα1E(ϵ

2
t ) + α2

1E(ϵ
4
t )

= ω2 +
2ω2α1

1− α1
+ 3α2

1E(σ
4
t )

E(σ4
t ) =

1

1− 3α2
1

[
ω2 +

2ω2α1

1− α1

]
=

ω2(1 + α1)

(1− α1)(1− 3α2
1)
,
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which makes sense only if 3α2 < 1, which is the condition for the
finiteness of the fourth moment.

• In this case, from (8)

E(ϵ4t ) =
3ω2(1 + α1)

(1− α1)(1− 3α2
1)
, (9)

and the kurtosis of the unconditional distribution is, with E(ϵ2t ) =
ω/(1− α1),

E(ϵ4t )

E2(ϵ2t )
=

3ω2(1 + α1)(1− α1)
2

ω2(1− α1)(1− 3α2
1)

=
3(1− α1)(1 + α1)

1− 3α2
1

=
3(1− α2

1)

1− 3α2
1

> 3.
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• The ACF of the squared process,

ϱ(τ) = Corr(ϵ2t , ϵ
2
t−τ) =

E(ϵ2tϵ
2
t−τ)− E2(ϵ2t )

E(ϵ4t )− E2(ϵ2t )
, (10)

which is well–defined for 3α2
1 < 1, is also of interest.

• We find

E(ϵ2tϵ
2
t−τ) = E(ϵ2t−τη

2
t (ω + α1ϵ

2
t−1)︸ ︷︷ ︸

=σ2
t

)

= ωE(ϵ2t ) + α1E(ϵ
2
t−τϵ

2
t−1)

= E2(ϵ2t )(1− α1) + α1E(ϵ
2
t−τϵ

2
t−1)

= E2(ϵ2t ) + α1[E(ϵ
2
t−τϵ

2
t−1)− E2(ϵ2t )]

E(ϵ2tϵ
2
t−τ)− E2(ϵ2t ) = α1[E(ϵ

2
t−τϵ

2
t−1)− E2(ϵ2t )],

which implies ϱ(τ) = α1ϱ(τ − 1).
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• For τ = 1, we have

E(ϵ2tϵ
2
t−1)− E2(ϵ2t ) = α1[E(ϵ

4
t )− E2(ϵ2t )],

so
ϱ(τ) = ατ . (11)

16



GARCH Models

• In practice, pure ARCH(q) processes are rarely used, since for an adequate
fit a large number of lags is usually required.

• A more parsimonious formalization is provided by the Generalized ARCH
(GARCH) process, as proposed by Bollerslev (1986) and Taylor (1986).2

• The GARCH(p, q) model generalizes (5) to

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βiσ
2
t−i. (12)

• To make sure that the variance is positive, Bollerslev (1986) imposed
that

ω > 0; αi ≥ 0, i = 1, . . . , q; βi ≥ 0, i = 1, . . . , p. (13)
2T. Bollerslev (1986): Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics

31, 307-327. S. J. Taylor (1986): Modelling Financial Time Series, Wiley.
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• These conditions are sufficient but can be weakened for models where
one of the orders is larger than unity (see below). Conditions (13) are
necessary and sufficient for guaranteeing a positive variance process in
pure ARCH processes and the GARCH(1,1) process, however.

• Similar to the ARCH(q) process, we can calculate the unconditional
variance of process as

E(σ2
t ) = E(ϵ2t ) =

ω

1−
∑q

i=1αi −
∑p

i=1 βi
, (14)

provided the (covariance) stationarity condition

q∑
i=1

αi +

p∑
i=1

βi < 1 (15)

is satisfied.

• To characterize the correlation structure of the squared process, define
the prediction error

ut = ϵ2t − E(ϵ2t |It−1) = ϵ2t − σ2
t . (16)
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• ut = ϵ2t −σ2
t = (η2t − 1)σ2

t is white noise but not strict white noise, since
it is uncorrelated but not independent.

• Substituting (17) for σ2
t into (12) results in

ϵ2t = ω +

max{p,q}∑
i=1

(αi + βi)ϵ
2
t−i −

p∑
i=1

βiut−i + ut, (17)

where αi = 0 for i > q and βi = 0 for i > p.

• Equation (17) is an ARMA(max{p, q}, p) representation for the squared
process {ϵ2t}, which characterizes its autocorrelations.

• The ARMA representation can also be used to explicitly calculate the
autocorrelations.

• For example, the ARMA(1,1) representation of the GARCH(1,1) process
is

ϵ2t = ω + (α1 + β1)ϵ
2
t−1 + ut − β1ut. (18)
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• Recall that the ACF of the ARMA(1,1) process

Yt = ϕYt−1 + θϵt−1 + ϵt

is

Corr(Yt, Yt−τ) = ϕτ−1(ϕ+ θ)(1 + ϕθ)

1 + 2θϕ+ θ2
.

• Plugging in α1 + β1 for ϕ and −β1 for θ gives the ACF of the squares of
a GARCH(1,1) process as

ϱ(τ) = (α1 + β1)
τ−1α1(1− α1β1 − β2

1)

1− 2α1β1 − β2
1

,

provided the fourth moment is finite (see below).

• The GARCH(1,1) process is most often applied in practice.
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• To find the moments of this process, it is convenient to write

σ2
t = ω + α1ϵ

2
t−1 + β1σ

2
t−1 = ω + (α1η

2
t−1 + β1)σ

2
t−1

= ω + ct−1σ
2
t−1, ct = α1η

2
t + β1.

• Note that σ2
t−1 is determined based on the information up to time t− 2.

• ct−1 depends on ηt−1.

• Thus ct−1 and σ2
t−1 are independent, and

E(cmt−1σ
n
t ) = E(cmt−1)E(σ

n
t ) (19)

for all m and n.

• We have

E(ct) = α1+β1, E(c2t ) = E(α2
1η

4
t +2α1β1η

2
t +β

2
1) = 3α2

1+2α1β1+β
2
1.
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• Since E(σ2
t ) =

ω
1−α−β = ω/(1− E(ct)),

E(σ4
t ) = ω2 + 2ωE(ct)E(σ

2
t ) + E(c2t )E(σ

4
t )

E(σ4
t ) =

ω2(1 + E(ct))

(1− E(ct))(1− E(c2t ))

=
ω2(1 + α1 + β1)

(1− α1 − β1)(1− 3α2
1 − 2α1β1 − β2

1)
,

where E(c2t ) = 3α2
1 + 2α1β1 + β2

1 < 1 is the condition for the existence
of the fourth moment.

• The kurtosis is then

E(ϵ4t )

E2(ϵ2t )
= 3

(1− α1 − β1)(1 + α1 + β1)

1− 3α2
1 − 2α1β1 − β2

1

= 3 +
6α2

1

1− 3α2
1 − 2α1β1 − β2

1

.
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• To illustrate why GARCH(1,1) typically fits better than even a high–order
ARCH(q), we write in lag–operator form and invert (assuming β1 < 1)

σ2
t = ω + α1ϵ

2
t−1 + β1σ

2
t−1 (20)

(1− β1L)σ
2
t = ω + α1ϵ

2
t−1 (21)

σ2
t =

ω

1− β1
+

α1ϵ
2
t−1

1− β1L
(22)

=
ω

1− β1
+ α1

∞∑
i=1

βi−1
1 ϵ2t−i. (23)

• This shows that GARCH(1,1) is ARCH(∞) with geometrically declining
lag structure, i.e., σ2

t = ω̃ +
∑∞

i=1ψiϵ
2
t−i, with ψi = α1β

i−1
1 .

• The declining lag structure is reasonable as it implies that the impact of
more recent shocks on the current variance is larger than that of earlier
shocks.
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• The ARCH(∞) representation (20) shows that α1 can be interpreted as
a reaction parameter, as it measures the reactiveness of the conditional
variance to a shock in the previous period, i.e., the immediate impact of
a unit shock on the next period’s conditional variance.

• Parameter β1, on the other hand, is a memory parameter which measures
the memory in the variance process. E.g., if β1 is small, βi

1 tends to
zero very rapidly with i, and the direct impact of a shock on future
conditional variances dies out soon.
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Note on the nonnegativity conditions (13)

• We can use lag–operator notation to write the GARCH model as

β(L)σ2
t = ω + α(L)ϵ2t ,

where

β(L) = 1− β1L− β2L
2 − · · · − βpL

p

α(L) = α1L+ α2L
2 + · · ·+ αqL

q.

Inverting gives the ARCH(∞)3

σ2
t =

ω

1−
∑

i βi
+
α(L)

β(L)
ϵ2t =

ω

1−
∑

i βi
+

∞∑
i=1

ψiϵ
2
t−i.

3This requires that β(z) has all roots outside the unit circle.
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• For σ2
t to remain positive with probability 1, we observe that it is

necessary and sufficient that

ω

1−
∑

i βi
> 0, ψi ≥ 0 for all i.

• These restrictions are weaker than (13) except for the pure ARCH(q)
and the GARCH(1,1).
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• The simplest case is the GARCH(1,2),

σ2
t = ω + α1ϵ

2
t−1 + α2ϵ

2
t−2 + β1σ

2
t−1

(1− β1L)σ
2
t = ω + (α1L+ α2L

2)ϵ2t

σ2
t =

ω

1− β1
+

(
α1L

1− β1L
+

α2L
2

1− β1L

)
ϵ2t

=
ω

1− β1
+

(
α1

∞∑
i=1

βi−1
1 Li + α2

∞∑
i=2

βi−2
1 Li

)
ϵ2t

=
ω

1− β1
+ α1ϵ

2
t−1 +

∞∑
i=2

(α1β
i−1
1 + α2β

i−2
1 )ϵ2t−i

=
ω

1− β1
+ α1ϵ

2
t−1 +

∞∑
i=2

βi−2
1 (α1β1 + α2)ϵ

2
t−i

• Thus

ψ1 = α1

ψk = βk−2
1 (α1β1 + α2), k ≥ 2.
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• This gives rise to the set of necessary and sufficient conditions

ω > 0

α1 ≥ 0

1 > β1 ≥ 0

α1β1 + α2 ≥ 0.

• α2 may be negative if α1 > 0 and β1 > 0 .

• For the most frequently applied GARCH(1,1) process, however, the
nonnegativity constraints ω > 0, α, β ≥ 0 are necessary.
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Testing for GARCH

• The tests have to be applied to the residuals {ϵ̂t}Tt=1 of a model for
the conditional mean, which may include exogenous factors time series
components (such as ARMA), or just a constant.

• The Ljung–Box–Pierce statistic for the autocorrelations of the squares,

Q⋆ = T (T + 2)

K∑
τ=1

ρ̂ϵ̂2(τ)
2

T − τ

asy∼ χ2(K). (24)

• Engle (1982) derived a Lagrange multiplier test which works as follows.

• Run the regression with q lags

ϵ2t = b0 + b1ϵ̂
2
t−1 + · · ·+ bqϵ̂

2
t−q + ut. (25)

• Under H0 of no ARCH effects (conditional homoskedasticity), the test
statistic

LM = TR2 asy∼ χ2(q), (26)
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where T is the sample size and R2 is the coefficient of determination
obtained from the regression (25).

• The test has to be applied to the residuals of a model for the conditional
mean (which may include exogenous factors, time series components, or
just a constant).
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Estimation

• GARCH models are most frequently estimated by conditional maximum
likelihood.

• To illustrate, suppose we want to estimate an AR(1)–GARCH(1,1) model
for returns rt.

• That is, the conditional mean of the time series is described by an AR(1),
and the conditional variance is driven by GARCH(1,1).

• If we assume conditional normality, the model is

rt = c+ ϕrt−1 + ϵt, |ϕ| < 1 (27)

ϵt = ηtσt, ηt
iid∼ N(0, 1) (28)

σ2
t = ω + αϵ2t−1 + βσ2

t−1 (29)

ω > 0, α, β ≥ 0. (30)
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• The parameter vector is θ = [θ1, θ2], where θ1 = [c, ϕ] is the conditional
mean part, and θ2 = [ω, α, β] is the GARCH–part.

• We observe a stretch of length T , {rt}Tt=1, and a presample value r0
(i.e., the first observation of our original sample).

• From the ARMA part, for a given value of θ1, θ̂1 = (ĉ, ϕ̂), we calculate

ϵ̂t = rt − ĉ− ϕ̂rt−1, t = 1, . . . , T. (31)

• The conditional log–likelihood function, logL(θ), is then given by

logL(θ̂) =

T∑
t=1

ℓt(θ̂), (32)

where, under conditional normality,

ℓt(θ̂) = −1

2
log σ̂2

t −
1

2

ϵ̂2t
σ̂2
t

, t = 1, . . . , T, (33)
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and, for given θ̂2 = (ω̂, α̂, β̂),

σ̂2
t = ω̂ + α̂ϵ̂2t−1 + β̂σ̂2

t−1, t = 1, . . . , T. (34)

• To start the GARCH recursion (34), we need initial values σ̂2
0 and ϵ̂20.

• One possibility is to set these equal to their unconditional values estimated
from the sample at hand, i.e.,

σ̂2
0 = ϵ̂20 =

1

T

T∑
t=1

ϵ̂2t , (35)

with ϵ̂t, t = 1, . . . , T , given by (31).

• Alternatively, we could treat σ̂2
0 as an additional parameter to estimate,

and estimate ϵ̂0 via the difference between r0 and its unconditional mean
implied by the AR(1), i.e., E(r0) = c/(1− ϕ).
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• In practice, GARCH models are typically applied to sufficiently long time
series, so that the choice of the initialization has negligible impact on
the results.

• We then maximize (32) with respect to θ to obtain the maximum

likelihood estimator (MLE) θ̂ML.

• Following standard large sample theory for the MLE, inference (e.g.,
calculation standard errors) is based on

θ̂ML
approx∼ Normal(θ, I(θ̂ML)

−1), (36)

where

I(θ̂ML) = −∂ logL(θ̂ML)

∂θ∂θ′
= −

T∑
t=1

∂ℓt(θ̂ML)

∂θ∂θ′
(37)

is the negative of the Hessian matrix of the log–likelihood function,
evaluated at the MLE.

• The derivatives in (37) can be calculated analytically or numerically.
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• The Gaussian assumption for ηt often appears to be unreasonable.

• A frequently employed alternative is Student’s t, in which case the density
of ηt is

f(ηt; ν) =
Γ
(
ν+1
2

)
Γ(ν/2)

√
(ν − 2)π

(
1 +

η2t
ν − 2

)−(ν+1)/2

,

where ν > 2 is the degrees of freedom parameter and controls the
thickness of the tails.

• Note that ν is a free parameter of the model that is estimated
simultaneously with the other parameters from the data.
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Fitting GARCH Models

• To illustrate typical results, we fit model

rt = µ+ ϵt

ϵt = ηtσt, ηt
iid∼ N(0, 1)

σ2
t = ω + αϵ2t−1 + βσ2

t−1

to various stock index series.

• Parameter estimates are reported in Table 1.
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Table 1: GARCH(1,1) estimates for various stock return series, approx.

1990–2010
Series ω̂ α̂1 β̂1 α̂1 + β̂1

S&P 500 0.0077
(0.0017)

0.0655
(0.0067)

0.9284
(0.0072)

0.9939

DAX 0.0355
(0.0053)

0.0918
(0.0089)

0.8910
(0.0099)

0.9828

FTSE 0.0113
(0.0025)

0.0856
(0.0081)

0.9059
(0.0087)

0.9915

CAC 40 0.0290
(0.0054)

0.0851
(0.0085)

0.9001
(0.0097)

0.9852
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• Simple diagnostics can be based on the sequence of standardized
residuals,

η̂t =
ϵ̂t
σ̂t
, t = 1, . . . , T. (38)

• This sequence should behave like an iid sequence from the presumed
innovation distribution.

• In particular, the GARCH model should capture all the conditional
heteroskedasticity.

• Thus, sequence (38) should not display any conditional heteroskedasticity.

• This can be checked visually by plotting the SACF of the absolute
or squared residuals, or by calculating test statistics for conditional
heteroskedasticity, as discussed above.

• If the innovations have been assumed normal, we can apply normality
tests to (38).
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Table 2: Kurtosis of raw returns and residuals (38)
S&P 500 DAX FTSE CAC 40

raw returns 12.1307 8.0553 9.6318 7.8069

residuals (38) 4.8993 9.6475 3.8232 4.9332

• We observe that GARCH captures part of the excess kurtosis in the
unconditional distribution.

• (The number for the DAX is due to the Gorbatschow-Putsch in August
1991.)

• However, the kurtosis of the standardized residuals (38) is still
significantly different from the Gaussian value.

• That a leptokurtic (fat–tailed) innovation distribution may be
appropriate.
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The Q–Q plots of the {η̂t} also indicate a fatter tailed innovation density.
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This applies to the standardized residuals (38). GARCH(1,1) appears to be
sufficient.
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Alternative Innovation Distributions

• In view of these results, it appears reasonable to replace the normal
distribution of ηt in the GARCH(1,1) with a more flexible alternative
that allows for conditional leptokurtosis.

• Two of the most popular candidates in this regard are the

– Student’s t
– Generalized Error Distribution (GED)

• The unit–variance versions of these are given by

f(ηt; ν) =
Γ
(
ν+1
2

)
Γ(ν/2)

√
(ν − 2)π

(
1 +

η2t
ν − 2

)−(ν+1)/2

, (39)

and

f(ηt; p) =
λp

21/p+1Γ(1/p)
exp

{
−|ληt|p

2

}
, (40)

where λ = 21/p
√
Γ(3/p)/Γ(1/p).
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Covariance Stationarity and Unconditional Variance for
General Innovation Distributions

• In the GARCH(p, q),

ϵt = ηtσt (41)

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βiσ
2
t−i,

to find the unconditional variance, we take expectations on both sides,

E(σ2
t ) = ω +

q∑
i=1

αiE(ϵ
2
t−i) +

p∑
i=1

βiE(σ
2
t−i).

• If the innovations ηt in (41) have unit variance, E(η2t ) = 1, it follows
that E(ϵ2t ) = E(η2tσ

2
t ) = E(η2t )E(σ

2
t ) = E(σ2

t ), and so

E(ϵ2t ) = E(σ2
t ) =

ω

1−
∑

iαi −
∑

i βi
, (42)
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provided the second–order stationarity condition

∑
i

αi +
∑
i

βi < 1 (43)

is satisfied.

• However, non–normal densities are not always applied in standardized
(unit–variance) form.

• For example, the “conventional” Student’s t is also often used and has
density

f(ηt) =
Γ
(
ν+1
2

)
Γ(ν/2)

√
νπ

(
1 +

η2t
ν

)−(ν+1)/2

,

which has (for ν > 2)

κ2 := E(η2t ) =
ν

ν − 2
.

46



• If, in general, E(η2t ) = κ2, then (43) and (42) become

κ2
∑
i

αi +
∑
i

βi < 1,

and
E(ϵ2t ) = κ2E(σ

2
t ) =

κ2ω

1− κ2
∑

iαi −
∑

i βi
,

respectively.
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Table 3: GARCH(1,1) estimates for various stock return series, January

1990 to October 2009
Student’s t

Series ω̂ α̂1 β̂1 ν̂ α̂1 + β̂1

CAC 40 0.0197
(0.0048)

0.0751
(0.0081)

0.9150
(0.0089)

11.2269
(1.4925)

0.9902

DAX 0.0154
(0.0039)

0.0852
(0.0092)

0.9096
(0.0093)

8.6085
(0.8904)

0.9948

FTSE 0.0103
(0.0025)

0.0797
(0.0084)

0.9122
(0.0090)

13.2518
(2.0502)

0.9918

GED

Series ω̂ α̂1 β̂1 p̂ α̂1 + β̂1

CAC 40 0.0240
(0.0054)

0.0787
(0.0087)

0.9090
(0.0098)

1.5772
(0.0430)

0.9878

DAX 0.0226
(0.0048)

0.0882
(0.0099)

0.9027
(0.0103)

1.4412
(0.0364)

0.9909

FTSE 0.0110
(0.0026)

0.0825
(0.0086)

0.9089
(0.0092)

1.6790
(0.0472)

0.9914
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Table 4: Maximized log–likelihood values
CAC 40 DAX FTSE

Normal –8088.5 –8180.9 –6798.8
Student’s t –8032.5 –8048.2 –6768.2

GED –8048.6 –8085.1 –6779.0

Differences in log–likelihood
Student’s t–Normal 56.0047 132.6939 30.6056

GED–Normal 39.8959 95.7972 19.8580
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IGARCH and EWMA

• The finding that often α1+β1 ≈ 1 has led to the suggestion of imposing
the restriction

α1 + β1 = 1,

which is referred to as IGARCH(1,1) (integrated GARCH), since there is
a “unit root” in the GARCH polynomial.

• However, the analogy to integrated (unit root) processes is rather weak.

• In particular, IGARCH(1,1) processes are (strictly) stationary, although
their second moment does not exist.

• Nelson (1990) has shown that the GARCH(1,1) is strictly stationary if

E[log(α1η
2
t + β1)] < 0.

• By Jensen’s inequality, for the IGARCH(1,1),

E[log(α1η
2
t + β1)] < log E(α1η

2
t + β1) = log 1 = 0.
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• α1 + β1 may be even larger than unity. For example, the ARCH(1)
process with α1 = 3 is stationary, although extremely fat–tailed.

• A special case of an IGARCH model (with zero intercept) is
the exponentially weighted moving average (EWMA) popularized by
RiskMetrics of J.P. Morgan, which is

σ2
t = (1− λ)

∞∑
i=0

λiϵ2t−1−i = (1− λ)ϵ2t−1 + λσ2
t−1, 0 < λ < 1, (44)

with λ fixed at 0.94 for daily data.

• IGARCH and EWMA tend to be inferior in empirical applications,
however.
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Backtesting Predictive Densities of Nonlinear Time
Series Models

• In the Gaussian GARCH model, series

η̂t =
ϵ̂t
σ̂t
, t = 1, . . . , T, (45)

should mimic an iid standard normally distributed series.

• Similarly, in a t or GED GARCH model, (45) should behave like an iid
standard t or GED sequence.

• A frequently used technique to generate iid standard normal residuals is
as follows.
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• Calculate the series

ut = F (rt|It−1), t = 1, . . . , T, (46)

where F (·|It−1) is the conditional cumulative distribution function (cdf)
of the return rt implied by the model under consideration, based on
information up to time t− 1, It−1.

• For example, in a GARCH model with normal innovations, F (·|It−1) is
the normal cdf,

F (r|It−1) = Φ

(
rt − µ̂t

σ̂t

)
=

1√
2πσ̂t

∫ r

−∞
exp

{
−(ξ − µ̂t)

2

2σ̂2
t

}
dξ, (47)

where Φ is the standard normal cdf and µ̂t and σ̂2
t are the conditional

mean and variance implied by the estimated model, respectively.

• Computer programs do these calculations for most of the commonly used
distributions.
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• If the model is correctly specified, (46) is a series of iid uniform(0,1)
variables. This is also known as the Rosenblatt transform.

• Subsequently, apply a second transformation, namely,

{zt} = Φ−1({ut}), (48)

where Φ−1 is the inverse of the standard normal cdf.

• For example,

Φ−1(.025) = −1.96, Φ−1(.05) = −1.6449, Φ−1(.5) = 0.

• If the model is correctly specified, (48) is a sequence of iid standard
normal variables.

• This allows the use of standard and simple normality tests for correct
specification of (conditional) skewness and kurtosis.
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• Let ŝ and κ̂ be the sample skewness and kurtosis, respectively, i.e.,

ŝ =
T−1

∑
t(zt − z̄)3

{T−1
∑

t(zt − z̄)2}3/2
, κ̂ =

T−1
∑

t(zt − z̄)4

{T−1
∑

t(zt − z̄)2}2
.

• Under normality,

ŝ
asy∼ Normal(0, 6/T ), κ̂

asy∼ Normal(3, 24/T ), (49)

so
T ŝ2/6

asy∼ χ2(1), T (κ̂− 3)2/24
asy∼ χ2(1), (50)

and the Jarque–Bera test

JB = T ŝ2/6 + T (κ̂− 3)2/24
asy∼ χ2(2). (51)

• We can also test for absence of autocorrelation, zero mean and unit
variance by means of likelihood ratio tests based on the Gaussian
likelihood.
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Economic Evaluation: Value–at–Risk (VaR)

• Both in industry and in academia, Value–at–Risk (VaR) is a widely
employed measure to characterize the downside risk of a financial position.

• The VaR(ξ)

– with shortfall probability ξ (typically a small number, e.g., ξ = 0.01
or 0.05)

for a given horizon (typical a day or a week) is defined such that

– over the next period (e.g., day or week), the probability that the
portfolio suffers a loss larger than the VaR(ξ) is 100× ξ%.

• Equivalently, with probability 1− ξ, our loss will not exceed the VaR(ξ).

• To be more precise, consider a time series of portfolio returns, rt, and
an associated series of ex–ante VaR measures with shortfall probability
ξ, VaRt(ξ).
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• The VaRt(ξ) implied by a model M is defined by

FM
t−1(VaRt(ξ)) = ξ, (52)

where FM
t−1 is the (conditional) cumulative distribution function (cdf)

derived from model M using the information up to time t− 1.

• Statistically, it is the ξ–quantile of the conditional return distribution.

• Under conditional normality, we have

VaRt(ξ) = µt + zξσt,

where µt is the conditional mean of the return, zξ is the ξ–quantile of
the standard normal distribution (e.g., z0.01 = −2.3263), and σt is the
conditional standard deviation.

• A violation or hit is said to occur at time t if

rt < VaRt(ξ).
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• For a nominal VaR shortfall probability ξ and a correctly specified VaR
model, we expect 100×ξ% of the observed return values to be violations
(shortfalls).

• To test the models’ suitability for calculating accurate ex–ante VaR
measures, define the binary sequence

It =

{
1, if rt < VaRt,

0, if rt ≥ VaRt.
(53)

• Then the empirical relative shortfall frequency is

ξ̂ = x/T, where x =

T∑
t=1

It (54)

is the number of observed violations, and T is the number of forecasts
evaluated.

• If ξ̂ is significantly higher (less) than ξ, then the model under study tends
to underestimate (overestimate) the risk of the financial position.
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• If the model is correctly specified, the hit sequence is a sample of size T
from the Bernoulli distribution with parameter ξ, with pdf

p(It; ξ) = ξIt(1− ξ)1−It, (55)

and the likelihood of the sample is

L(ξ) = ξ
∑T

t=1 It(1− ξ)T−
∑T

t=1 It = ξx(1− ξ)T−x, (56)

with log–likelihood

logL(ξ) = x log ξ + (T − x) log(1− ξ). (57)

• The maximum likelihood estimator is obtained via

∂ logL(ξ)

∂ξ
=
x

ξ
− T − x

1− ξ
= 0 ⇒ ξ̂ =

x

T
. (58)
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• The likelihood ratio test statistic is two times the unrestricted log–
likelihood,

logL(ξ̂) = x log(x/T ) + (T − x) log{(T − x)/x}, (59)

minus the log–likelihood under the null that the actual shortfall probability
is equal to the nominal shortfall probability ξ,

logL(ξ̂) = x log ξ + (T − x) log(1− ξ). (60)

• The likelihood ratio test (LRT) statistic is

LRT = −2{x log(ξ/ξ̂) + (T − x) log[(1− ξ)/(1− ξ̂)]} asy∼ χ2(1). (61)
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One–step–ahead predictive densities

• First estimate the models over the (approximately) first ten years of data,
i.e., the first 2500 observations.

• Then update the parameters (approximately) every month (i.e., 20
trading days) employing a moving window of data, i.e., using the most
recent 2500 observations in the sample.

• We get, for each model and series, 2480 one–step–ahead predictive
densities for the period January 2000 to October 2009.
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Table 5: GARCH(1,1) density forecasts based on (48)
Gaussian GARCH(1,1)

Series mean var. skewness kurtosis JB

CAC 40 −0.0562∗∗∗ 1.0229 −0.304∗∗∗ 4.014∗∗∗ 144.5∗∗∗

DAX −0.0567∗∗∗ 1.0249 −0.317∗∗∗ 3.945∗∗∗ 133.7∗∗∗

FTSE −0.0517∗∗ 1.0221 −0.354∗∗∗ 3.746∗∗∗ 109.3∗∗∗

GED GARCH(1,1)

Series mean var. skewness kurtosis JB

CAC 40 −0.0569∗∗∗ 1.0162 −0.221∗∗∗ 3.327∗∗∗ 31.20∗∗∗

DAX −0.0643∗∗∗ 1.0152 −0.224∗∗∗ 3.184∗ 24.17∗∗∗

FTSE −0.0538∗∗∗ 1.0164 −0.275∗∗∗ 3.238∗∗ 37.06∗∗∗

Student’s t GARCH(1,1)

Series mean var. skewness kurtosis JB

CAC 40 −0.0584∗∗∗ 1.0121 −0.185∗∗∗ 3.097 15.11∗∗∗

DAX −0.0636∗∗∗ 1.0138 −0.187∗∗∗ 2.983 14.55∗∗∗

FTSE −0.0540∗∗∗ 1.0144 −0.240∗∗∗ 3.070 24.24∗∗∗

Asterisks ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,

respectively.
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Table 6: GARCH(1,1) Value–at–Risk measures, reported is 100× ξ̂
Gaussian GARCH(1,1)

Series ξ = 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

CAC 40 0.36∗∗∗ 0.52∗∗ 0.89∗∗ 1.69∗∗∗ 3.83∗∗∗ 6.33∗∗∗ 11.01∗

DAX 0.28∗∗ 0.65∗∗∗ 1.01∗∗∗ 1.45∗∗ 3.79∗∗∗ 6.98∗∗∗ 11.73∗∗∗

FTSE 0.60∗∗∗ 0.77∗∗∗ 1.25∗∗∗ 2.02∗∗∗ 3.95∗∗∗ 6.37∗∗∗ 10.56

GED GARCH(1,1)

Series 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

CAC 40 0.32∗∗∗ 0.36 0.60 1.17 3.67∗∗∗ 6.25∗∗∗ 11.33∗∗

DAX 0.20 0.28 0.65 1.13 3.31∗∗ 6.98∗∗∗ 12.50∗∗∗

FTSE 0.28∗∗ 0.65∗∗∗ 0.97∗∗∗ 1.57∗∗∗ 3.67∗∗∗ 6.37∗∗∗ 11.01∗

Student’s t GARCH(1,1)

Series 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

CAC 40 0.20 0.36 0.56 1.17 3.75∗∗∗ 6.49∗∗∗ 11.45∗∗

DAX 0.12 0.28 0.65 1.13 3.43∗∗∗ 7.10∗∗∗ 12.54∗∗∗

FTSE 0.24∗ 0.65∗∗∗ 0.85∗∗ 1.61∗∗∗ 3.83∗∗∗ 6.57∗∗∗ 11.41∗∗

Asterisks ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,

respectively, based on the test (61).
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Conditional Skewness

• The results suggest that the innovations, in addition to being leptokurtic,
are also skewed, which needs to be taken into account to deliver reliable
density forecasts.

• Asymmetric versions of the GED and the t distributions have been
proposed.

• Regarding the GED, the skewed exponential power (SEP) distribution of
Fernandez, Osiewalski, and Steel (1995) has density

f(z; p, θ) =
θ

1 + θ2
p

21/pΓ(1/p)

{
exp

{
−1

2 (|z|θ)
p} if z < 0

exp
{
−1

2

(
z
θ

)p}
if z ≥ 0,

(62)

where θ, p > 0.

• This distribution nests the normal for θ = 1 and p = 2. For θ < 1(θ > 1),
the density is skewed to the left (right), and is fat–tailed for p < 2.
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• Various skewed versions of the Student’s t exist.

• A t version of (62) is the skewed t distribution proposed by Mittnik and
Paolella (2000), which has density

f(z; ν, p, θ) =
θ

1 + θ2
p

ν1/pB(ν, 1/p)


(
1 + (|z|θ)p

ν

)−(ν+1/p)

if z < 0(
1 + (z/θ)p

ν

)−(ν+1/p)

if z ≥ 0,

(63)
where ν, p, θ > 0, and B(·, ·) is the beta function.

• In view of our earlier results that the (symmetric) t was somewhat better
than the (symmetric) GED, we concentrate on the skewed t distribution
(63).
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Table 7: GARCH(1,1) estimates for various stock return series, January

1990 to October 2009
Skewed Student’s t

Series ω̂ α̂1 β̂1 ν̂ θ̂ p̂

CAC 40 0.0302
(0.0078)

0.1307
(0.0142)

0.9140
(0.0087)

4.2942
(1.1377)

0.9025
(0.0151)

2.1988
(0.1483)

DAX 0.0237
(0.0064)

0.1394
(0.0153)

0.9076
(0.0092)

3.2897
(0.6919)

0.9005
(0.0143)

2.2424
(0.1494)

FTSE 0.0167
(0.0043)

0.1431
(0.0150)

0.9119
(0.0085)

3.8977
(1.0776)

0.9100
(0.0148)

2.3275
(0.1723)

• All the θ̂s significantly different from 1.
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Table 8: Maximized log–likelihood values
CAC 40 DAX FTSE

Normal –8088.5 –8180.9 –6798.8
Student’s t –8032.5 –8048.2 –6768.2

GED –8048.6 –8085.1 –6779.0
skewed t –8013.1 –8024.8 –6749.3

Differences in log–likelihood
Student’s t – Normal 56.0047 132.6939 30.6056

GED – Normal 39.8959 95.7972 19.8580
skew t – t 19.4212 23.3951 18.9364

• The 1% critical value of a χ2(2) distribution is 9.2103.
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Table 9: GARCH(1,1) density forecasts based on (48)
skewed t GARCH(1,1)

Series mean var. skewness kurtosis JB

CAC 40 −0.0345∗ 1.0042 −0.036 3.126 2.163

DAX −0.0241 1.0131 −0.029 3.035 0.464

FTSE −0.0189 1.0126 −0.088∗ 3.067 3.630

Asterisks ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,

respectively.
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Table 10: GARCH(1,1) Value–at–Risk measures, reported is 100× ξ̂
skewed t GARCH(1,1)

Series ξ = 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

CAC 40 0.16 0.32 0.40 0.85 2.74 5.56 10.93

DAX 0.12 0.24 0.40 0.89 2.58 6.25∗∗∗ 11.61∗∗∗

FTSE 0.24∗ 0.24 0.65 1.29 3.15∗∗ 5.93∗∗ 10.12

Student’s t GARCH(1,1)

Series 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

CAC 40 0.20 0.36 0.56 1.17 3.75∗∗∗ 6.49∗∗∗ 11.45∗∗

DAX 0.12 0.28 0.65 1.13 3.43∗∗∗ 7.10∗∗∗ 12.54∗∗∗

FTSE 0.24∗ 0.65∗∗∗ 0.85∗∗ 1.61∗∗∗ 3.83∗∗∗ 6.57∗∗∗ 11.41∗∗

Asterisks ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,

respectively, based on the test (61).

• Summarizing, both conditional skewness and kurtosis may be important
and can considerably improve conditional predictive densities.
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Asymmetric GARCH Models

• The basic GARCH model considered so far assumes that the conditional
variance σ2

t depends only on the magnitude and not on the sign of past
shocks.

• However, stock market variance tends to react more strongly to bad news
than to good news, which is often referred to as the leverage effect.

• To illustrate, we may define the leverage effect at lag τ as

L(τ) = Corr(ϵt−τ , |ϵt|). (64)
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Asymmetric GARCH Models I

• The first model that has been put forward is the Asymmetric GARCH
(AGARCH) of Engle (1990), which specifies the conditional variance as

σ2
t = ω + α(ϵt−1 − θ)2 + βσ2

t−1 (65)

= ω + αθ2 + αϵ2t−1 − 2αθϵt−1 + βσ2
t−1. (66)

• In model (65), the conditional variance, as a function of ϵt−1, has its
minimum at θ rather than at zero.

• Thus, if θ > 0, negative shocks will have a greater impact on the
conditional variance than positive shocks of the same magnitude.

• (66) shows that, if α+ β < 1, the unconditional variance of this process
is

E(σ2
t ) =

ω + αθ2

1− α− β
. (67)
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Asymmetric GARCH Models II

• The asymmetric GARCH model proposed by Glosten, Jagannathan and
Runkle (1993), referred to as GJR–GARCH, models the conditional
variance as

σ2
t = ω + (α+ θSt−1)ϵ

2
t−1 + β1σ

2
t−1,

where

St−1 =

{
1 if ϵt−1 < 0

0 if ϵt−1 ≥ 0

• Clearly θ > 0 implies that the change in the next period’s variance is
negatively correlated with today’s return.

• If the innovation density is symmetric (e.g., normal or Student’s t), the
unconditional variance is

E(σ2
t ) =

ω

1− α− θ/2− β
.
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News Impact Curve

• To analyze the asymmetric response of the variance in different GARCH
specifications, Engle and Ng (1993) defined the new impact curve (NIC).

• This is defined as the functional relationship

σ2
t = σ2

t (ϵt−1),

with all lagged variances evaluated at their unconditional values.

• For example, for the standard symmetric GARCH(1,1) model, we have

σ2
t (ϵt−1) = A+ αϵ2t−1,

where
A = ω + βσ2, σ2 =

ω

1− α− β
.

• This is a symmetric function of ϵt−1.
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• Asymmetries may be introduced in various ways: Compared to the
standard GARCH, we can change either the position of the slope of the
NIC (or both).

• For example, the AGARCH captures asymmetry by allowing its NIC to
be centered at a positive ϵt−1, since

σ2
t (ϵt−1) = A+ α(ϵt−1 − θ)2,

where

A = ω + βσ2, σ2 =
ω + αθ2

1− α− β
.
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• The GJR captures the asymmetry in the impact of news on volatility via
a steeper slope for negative than for positive shocks, i.e.,

σ2
t (ϵt−1) = A+

{
(α+ θ)ϵ2t−1 if ϵt−1 < 0

αϵ2t−1 if ϵt−1 ≥ 0,

but the NIC of the GJR is still centered at zero, i.e., σ2
t (ϵt−1) is minimized

for ϵt−1 = 0.

• There exist further variants of asymmetric GARCH specifications, e.g.,
the popular EGARCH (exponential GARCH).

• The estimates reported on the following pages are based on normal
innovations; clearly nonnormal distributions allowing for fat tails and
asymmetries would be considered in practice.
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Table 11: Asymmetric GARCH(1,1) estimates for various stock return series,

January 1990 to October 2009
AGARCH (Gaussian)

Series ω̂ α̂ β̂ θ̂

CAC 40 0.0000
(0.0073)

0.0621
(0.0069)

0.9187
(0.0084)

0.7361
(0.0954)

DAX 0.0087
(0.0069)

0.0709
(0.0073)

0.9081
(0.0088)

0.6524
(0.0829)

FTSE 0.0000
(0.0036)

0.0673
(0.0071)

0.9189
(0.0079)

0.4693
(0.0664)

GJR–GARCH (Gaussian)

Series ω̂ α̂ β̂ θ̂

CAC 40 0.0297
(0.0050)

0.0157
(0.0067)

0.9184
(0.0086)

0.0959
(0.0109)

DAX 0.0364
(0.0053)

0.0220
(0.0072)

0.9042
(0.0093)

0.1049
(0.0126)

FTSE 0.0119
(0.0021)

0.0187
(0.0064)

0.9227
(0.0073)

0.0943
(0.0104)
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Table 12: Maximized log–likelihood values
CAC 40 DAX FTSE

GARCH –8088.5 –8180.9 –6798.8
AGARCH –8045.0 –8141.8 –6761.2

GJR–GARCH –8043.8 –8138.5 –6755.2

Differences in log–likelihood
AGARCH – GARCH 43.5299 39.0356 37.6334

GJR – GARCH 44.6940 42.3483 43.6754

Table 13: Unconditional variances, E(σ2
t )

CAC 40 DAX FTSE
data 2.0016 2.2133 1.3231

GARCH 1.9542 2.0610 1.3306
AGARCH 1.7559 1.8493 1.0772

GJR–GARCH 1.6649 1.7070 1.0370
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ARCH–M

• In the finance literature, a link is often made between the expected return
and the risk of an asset.

• Investors are willing to hold risky assets only if their expected return
compensate for the risk.

• A model that incorporates this link is the GARCH–in–mean or GARCH–M
model, which can be written as

rt = c+ δg(σ2
t ) + ϵt,

where ϵt is a GARCH error process, and g is a known function such as
g(σ2

t ) = σ2
t , g(σ

2
t ) = σt, or g(σ

2
t ) = log(σ2

t ).

• If δ > 0 and g is monotonically increasing, then the term δg(σ2
t ) can

be interpreted as a risk premium that increases expected returns if
conditional volatility σ2

t is high.

• In practice g(σ2
t ) = σt appears to be the preferred specification.
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