Exercise Session for Financial Data Analysis

Summer term 2011

Problem Set 5

Write to haas@stat.uni-muenchen.de if you want to present. You can also indicate multiple exercises (ordered according to your preference) in case your most preferred problem has already been assigned.

Problem 1 A specific simple version of a smooth transition GARCH (STGARCH)¹ model is given by

$$\epsilon_t = \sigma_t \eta_t, \quad \eta_t \stackrel{iid}{\sim} N(0, 1)$$
 (1)

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-1}^2 G(\epsilon_{t-1}; \gamma) + \beta \sigma_{t-1}^2$$
 (2)

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-1}^2 G(\epsilon_{t-1}; \gamma) + \beta \sigma_{t-1}^2$$

$$G(\epsilon_{t-1}; \gamma) = \frac{1}{1 + e^{\gamma \epsilon_{t-1}}}, \quad \gamma > 0,$$

$$(3)$$

$$\omega > 0, \quad \alpha_1, \beta \ge 0, \quad \alpha_1 + \alpha_2 \ge 0. \tag{4}$$

(a) Explain the effect of the transition function $G(\epsilon_{t-1}; \gamma)$ in (1)–(3). Which model is obtained for $\gamma \to \infty$?

Problem 2 Describe the main problems that arise when the GARCH model is generalized to capture the covariance dynamics of multivariate time series.

Problem 3 Suppose that the Single-Index Model (SIM) describes the percentage returns of individual stocks, r_i , i = 1, ..., N, that is, with r_M being the return of the market,

$$r_{i} = \alpha_{i} + \beta_{i} r_{M} + \epsilon_{i}, \quad \mathbf{E}(\epsilon_{i}) = 0, \quad \mathbf{Var}(\epsilon_{i}) = \sigma_{i}^{2}, \quad i = 1, \dots, N;$$

$$\mathbf{Cov}(\epsilon_{i}, \epsilon_{j}) = 0, \quad i \neq j; \quad \mathbf{Cov}(\epsilon_{i}, r_{M}) = 0, \quad i = 1, \dots, N;$$

$$\mathbf{E}(r_{M}) = \mu_{M}, \quad \mathbf{Var}(r_{M}) = \sigma_{M}^{2}.$$

- (a) Find $Var(r_i)$, i = 1, ..., N, and $Corr(r_i, r_j)$, the correlation between r_i and r_j .
- (b) Show that, if β_i and β_j have the same sign, the correlation between r_i and r_j is increasing in the variance of the market return, σ_M^2 .

¹G. Gonzales-Rivera (1998): Smooth Transition GARCH Models, Studies in Nonlinear Dynamics & Econometrics 3, 161-178.

Problem 4

Your portfolio consists of two risky assets, the percentage returns² of which are bivariate normally distributed with mean vector, $\boldsymbol{\mu}$, and covariance matrix, $\boldsymbol{\Sigma}$, given by

$$\mu = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix},$$

respectively. The weight vector of your portfolio is $\mathbf{w} = [0.5, 0.5]'$, and you have invested 5000 \$ in this portfolio. Compute the 1% Value–at–Risk for this position.

Problem 5 Consider the following asymmetric ARCH(1) process:

$$\epsilon_t = \eta_t \sigma_t, \quad \eta_t \stackrel{iid}{\sim} N(0, 1)$$
 (5)

$$\sigma_t^2 = \omega + \alpha (\epsilon_{t-1} - \theta)^2 \tag{6}$$

$$\omega > 0, \quad 0 < \alpha < 1/\sqrt{3}, \quad \theta \in \mathbb{R}.$$
 (7)

- (i) For the model defined by (5)–(7), find $Cov(\sigma_t^2, \epsilon_{t-1})$, i.e., the covariance between σ_t^2 and ϵ_{t-1} , and interpret your result.
- (ii) Find $Cov(\sigma_t^2, \epsilon_{t-\tau})$ for $\tau \geq 1$.

Problem 6 Consider a two-component scale³ normal mixture distribution with density

$$f(y) = \frac{\lambda}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(y-\mu)^2}{2\sigma_1^2}\right\} + \frac{1-\lambda}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu)^2}{2\sigma_2^2}\right\},\tag{8}$$

where $\lambda \in (0,1)$, and $\sigma_1^2 \neq \sigma_2^2$.

(a) Show that a random variable described by (8) implies a kurtosis which is larger than that of a normal random variable. (Without loss of generality, you may assume that $\mu = 0$.)

²That is, return $r_t = 100 \times (P_t - P_{t-1})/P_{t-1}$, where P_t is the asset price at time t.

³This is a scale mixture since only the scale parameter σ^2 is component–specific, whereas the mean μ is the same in each component.

Problem 7 Find the error in the following argument:

"The weekly return of our portfolio is generated by the GARCH(1,1) model

$$r_t = \mu + \eta_t \sigma_t, \quad \eta_t \stackrel{iid}{\sim} \text{Normal}(0, 1)$$
 (9)

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2. \tag{10}$$

In order to calculate the two-week-ahead Value-at-Risk at time t, we need

$$\tilde{\sigma}_t^2(2) := \operatorname{Var}_t(r_{t+1} + r_{t+2}) = \operatorname{Var}_t(r_{t+1}) + \operatorname{Var}_t(r_{t+2})$$
 (11)

$$= E_t(\sigma_{t+1}^2) + E_t(\sigma_{t+2}^2) = \sigma_{t+1}^2 + E_t(\sigma_{t+2}^2), \tag{12}$$

where $E_t(\sigma_{t+2}^2) = \omega + (\alpha + \beta)\sigma_{t+1}^2$. Thus, the conditional distribution of $r_{t:t+2} := r_{t+1} + r_{t+2}$ is

$$r_{t:t+2}|I_t \sim \text{Normal}(2\mu, \tilde{\sigma}_t^2(2)),$$
 (13)

where $I_t = \{\epsilon_s : s \leq t\}$ is the information available up to time t. Hence, the ξ -quantile of the two-week return distribution, q_{ξ} , is

$$q_{\xi} = 2\mu + z_{\xi}\tilde{\sigma}_t^2(2),\tag{14}$$

where z_{ξ} is the corresponding quantile of the standard normal distribution."