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Matching

Concept:
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A participant‘s outcome variable is 
compared to the outcome variable of one 
or several non participants as similar as 
possible to the participant. 
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Assumptions:

A1: Only observable factors influence 
participation and outcome variable 
simultaneously (Counter-example: 
motivation)
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motivation)
� CMI / CIA
A2: „common support“ is given, i.e.

1)|1(0 <=< xCP
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Conditional Independence                
Assumption (CIA):

Conditional on x, C and (y0,y1) are 
independent.
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independent.

Where x is the vector of all observed 
variables
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Conditional Mean Independence 
Assumption (CMI):

and[ ] [ ]xyECxyE |,| 00 = [ ] [ ]xyECxyE |,| 11 =
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and

CIA is more restrictive than CMI. CMI is 
sufficient to identify ATT.

[ ] [ ]xyECxyE |,| 00 = [ ] [ ]xyECxyE |,| 11 =
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Equation

can also be stated as
[ ] [ ]xyECxyE |,| 00 =

[ ] [ ]0,|1,| === CxyECxyE
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ATT can be estimated consistently

� Exact matching: for each participant find 
(at least) one non participant equal in x

[ ] [ ]0,|1,| 00 === CxyECxyE
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Problem:
In case vector x is large (many variables), 
it is unlikely to find a similar non participant 

for every participant with regard to all 
characteristics � curse of dimensionality
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characteristics � curse of dimensionality

Solution:

Matching of participants and non 
participants based on their estimated 
propensity scores: p(x)≡P(C=1|x)
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Rosenbaum und Rubin (1983)* show that 
if CIA holds then:

[ ] [ ]0),(|1),(| 00 === CxpyECxpyE
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Hence, matching of participants and non 
participants based on propensity scores is 
sufficient.

* Rosenbaum, P.R. und D.B. Rubin (1983), The Central Role of the 
Propensity Score in Observational Studies for Causal Effects, 

Biometrika 70  (1), S.1-55
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Advantages:

• Vector x is reduced to a one-
dimensional probability p(x)

• Easier to find „good matches“
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• Easier to find „good matches“

„Common Support“
0<p(C=1|x)<1

�No comparison of „incomparable“ 
individuals

Necessary Assumption for Matching:
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Individuals with equal characteristics of 
variable x should show a positive 

probability to be participants as well as a 
positive probability to be non participants.
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positive probability to be non participants.

Status of participation cannot be predicted 
using x.
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Procedure

• Estimation of a model for participation 
C conditioned on explanatory vector x 
(e.g.: Probit)
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(e.g.: Probit)
• Prediction of individual propensity 

scores based on the estimation
• Estimation of ATT as:
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A weighted average of all non participants‘ 
outcome variables is subtracted from 
every participants outcome variable.
Where:

N Number of participants
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N1 Number of participants
N0 Number of non participants
i Index of participants
j Index of non participants
wij Weights
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� The smaller the difference in estimated 
propensity scores |pi-pj| or equivalently 
the more similar participant i and non 
participant j are, the higher the weights
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� Weights of different Matching 
approaches differ: 

� „Nearest-Neighbour-Matching“
� „Caliper Matching“
� „Kernel-based Matching“
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„Nearest-Neighbour-Matching“

• There is only one member of the control 
group per participant: The non 
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participant minimizing |pi-pj|

• This „next neighbour‘s“ weight is set to 1 
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„Caliper Matching“

• Participant i is only included in the ATT 
calculation in case a next neighbour 
within a priori specified range |pi-pj| can 
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within a priori specified range |pi-pj| can 
be found

�Modification of „Nearest-Neighbour-
Matching“

�Reduces the probability of „bad 
matches“
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„Kernel based Matching“

� Use of several or all non participants
as control group for every participant
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� Weight for non participant j is a 
negative function of |pi-pj|.
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�All available information is included 

�Reduction of the estimation‘s variance

�Danger of higher selectivity bias as a 
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�Danger of higher selectivity bias as a 
participant can be assigned to 
unsimilar non participants
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Note: A linear regression model following 
the equation

is also conditioned on observable variables 

icii uCxy ++= ββ'
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is also conditioned on observable variables 
which do have an influence on participation 
and the outcome variable. 
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Disadvantages compared to Matching:

• No functional form assumptioon
• Common support unclear
• Heterogeneous treatment effect cannot 
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• Heterogeneous treatment effect cannot 
be measured
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