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The Simple Linear Regression Model

• Considering variables x and y in a specific population (e.g., years of
education and wage rate of full–time employees in Germany), we are
interested in

– investigating how y changes (on average) with changes in x,

or (just put differently)

– explaining (part of the variation of) y in terms of x.

• The simple linear model states that

y = β0 + β1x+ u (1)

describes the relation between y and x in our population of interest.

• In this framework, we will call

– y the dependent or explained variable, and
– x the independent or explanatory variable.
– More technical language: x is the regressor and y the regressand

1



The Simple Linear Regression Model: y = β0 + β1x+ u

• Random variable u is called the error term or disturbance.

• Clearly we cannot expect that the relationship y = β0+β1x holds exactly
for each element in the population.

• The term u accounts for the neglected factors which have an impact on
x but may not be observable.

• β0 and β1 are the parameters we are going to estimate.

– The slope parameter β1 measures the change in y in response to
a one–unit change in x, provided the neglected factors in u are held
fixed (the ceteris paribus effect).

– The intercept β0 may or may not be subject to meaningful interpre-
tation, as discussed below.
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The Simple Linear Regression Model: y = β0 + β1x+ u

• Our desire to figure out the partial effect of x on y raises questions about
the nature of the factors determining u.

• In particular, is it reasonable to assume that u and x do not display
systematic comovement?

• For example, consider an agricultural economist interested in the effect
of a new fertilizer on crop yields.

• This economist may be able to randomly assign different amounts of the
new fertilizer to several plots of land, i.e., independently of other plot
features that affect crop yield.

• The data thus generated is experimental data and we can be sure that
x and the neglected factors in u are independent.

• This is why, in the experimental sciences, x is also known as the “control
variable” (since it is under control of the investigator).
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The Simple Linear Regression Model: y = β0 + β1x+ u

• Unfortunately, this kind of data is rather untypical in economics and
the social sciences in general, where we are (usually) dealing with
observational data, where the researcher is just a passive collector of
the data.

• For instance, to puzzle out the relation between education and wages,
we cannot (and don’t want to) randomly divide children into groups,
allocate different amounts of education to these groups, and then observe
the children’s wage path after they mature and enter the labor force.

• In a setting more realistic than the above, education is affected by
personal abilities and attitudes towards work, which, likewise, might have
an impact on wage.
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The Simple Linear Regression Model: y = β0 + β1x+ u

• To formalize this discussion, we shall make the assumption that the joint
distribution of x and u is characterized by

E(u|x) = E(u) = 0, (2)

i.e., u is mean independent of x.

• In this case, we also have

E(y|x) = β0 + β1x+ E(u|x)︸ ︷︷ ︸
=0

= β0 + β1x, (3)

i.e., a one–unit change in x leads to a change of β1 units of the expected
value of y, or, put differently, the regression tells us how on average (in
the population) y changes in response to a change in x.
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The Ordinary Least Squares (OLS) Estimator

• Assume that we observe a sample of size n,

{(xi, yi) : i = 1, . . . , n}, (4)

from the population generated by our simple linear regression model. We
can write

yi = β0 + β1xi + ui, i = 1, . . . , n. (5)

• Our estimates of β0 and β1 will be denoted by β̂0 and β̂1, and we may
define the fitted values for y when x = xi as

ŷi = β̂0 + β̂1xi, (6)

and the regression residuals

ûi = yi − ŷi = yi − β̂0 − β̂1xi, i = 1, . . . , n. (7)
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The Ordinary Least Squares (OLS) Estimator

• Clearly, we would like to choose β̂0 and β̂1 such that the residuals ûi are
“small”.

• The OLS approach is taken if β̂0 and β̂1 are chosen such that the sum
of squared differences is as small as possible, i.e., by minimizing

S(β̂0, β̂1) =
n∑

i=1

û2
i =

n∑
i=1

(yi − β̂0 − β̂1xi)
2. (8)

• The first–order conditions are

∂S(β̂0, β̂1)

∂β̂0

= −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0 (9)

∂S(β̂0, β̂1)

∂β̂1

= −2

n∑
i=1

(yi − β̂0 − β̂1xi)xi = 0. (10)
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Note that (9) and (10) imply

n∑
i=1

ûi = 0, and
n∑

i=1

xiûi = 0, (11)

respectively.

• Solving the first condition shows

β̂0 = ȳ − β̂1x̄, (12)

where

ȳ =
1

n

n∑
i=1

yi, and x̄ =
1

n

n∑
i=1

xi (13)

are the sample means of y and x, respectively.

• (Rearranging (12) shows

ȳ = β̂0 + β̂1x̄,

i.e., the point (x̄, ȳ) will always be on the OLS regression line.)
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• Inserting the solution for β̂0 into the second condition, we get

n∑
i=1

(yi − ȳ − β̂1(xi − x̄))xi = 0 (14)

⇒ β̂1 =

∑n
i=1(yi − ȳ)xi∑n
i=1(xi − x̄)xi

=

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
(15)

=

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

=
sxy
s2x

(16)

=

n∑
i=1

wiyi, wi =
xi − x̄

ns2x
, (17)

where

sxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n

n∑
i=1

(xi − x̄)yi,

s2x =
1

n

n∑
i=1

(xi − x̄)2 =
1

n

n∑
i=1

(xi − x̄)xi.
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• Note that we require s2x > 0: If there is no variation in x, it is impossible
to figure out how changes in x affect y.
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Coefficient of Determination (R2)

• Using ŷ = n−1
∑n

i=1 ŷi = ȳ (since
∑

i ûi = 0), write

n∑
i=1

(yi − ȳ)2︸ ︷︷ ︸
=SST

=
n∑

i=1

{(yi − ŷi︸ ︷︷ ︸
=ûi

) + (ŷi − ȳ)}2

=

n∑
i=1

û2
i︸ ︷︷ ︸

=SSR

+

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
=SSE

+2

n∑
i=1

ûi(ŷi − ȳ)︸ ︷︷ ︸
=0

SST = SSR+ SSE,

where

• SST means total sum of squares, measuring the total sample variation
in the yis,

• SSE means explained sum of squares, i.e., the part of variation in the
yis that is explained by the fitted regression line,
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• SSR means residual sum of squares, i.e., the part of the variation that
is not explained by the fitted line.

• The result follows from∑
i

ûi(ŷi − ȳ) =
∑
i

ûi(β̂0 + β̂1xi − β̂0 − β̂1x̄) (18)

= β̂1

∑
i

ûixi︸ ︷︷ ︸
=0

−β̂1x̄
∑
i

ûi︸ ︷︷ ︸
=0

= 0,

which says that the sample correlation between the fitted values (ŷi) and
the regression residuals is zero.

• Then the coefficient of determination, R2,

R2 =
SSE

SST
= 1− SSR

SST
, (19)

which can be interpreted as the fraction of the sample variation in y that
is explained by x (via the fitted linear regression line).

12



• Clearly
0 ≤ R2 ≤ 1.

• The term R is used because R2 is actually just the squared correlation
between the sample values of x and y.

• Write

R2 =
SSE

SST
=

1
n

∑
i(ŷi − ȳ)2

s2y
=

β̂2
1

=s2x︷ ︸︸ ︷
1

n

∑
i

(xi − x̄)2

s2y

= β̂2
1︸︷︷︸

=(sxy/s2x)
2

s2x
s2y

=

 sxy√
s2xs

2
y


2

,

and sxy/
√
s2xs

2
y is just the definition of the sample correlation coefficient

between x and y.
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Statistical Properties of OLS: Assumptions
(Gauß–Markov Assumptions)

• We need the following assumptions:

1) The linear model is correctly specified, i.e., y is related to x and u as
y = β0 + β1x+ u. (Linearity in Parameters)

2) We observe a random sample of size n, {(xi, yi) : i = 1, . . . , n},
generated from the linear model, i.e., {(xi, ui), i = 1, . . . , n} are drawn
independently from a common distribution.

3) s2x > 0
4) E(u|x) = 0
5) E(u2|x) = Var(y|x) = σ2, i.e., the variance of u (and hence y) does

not depend on x (Homoskedasticity).
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• Random sampling (Assumption 2) means that observation (xi, ui) (and
hence also yi) is drawn independently from (xj, uj) for i ̸= j (but
from the same distribution, i.e., they are independently and identically
distributed (iid)).

• This may often be deemed realistic for cross–sectional data. Cross–
sectional data sets consist, e.g., of a sample of individuals, households,
firms, or other units, taken randomly at a given point in time.

• This is in contrast to time series data, where, for example, the growth
rate of GDP this year is not independent of the last year’s growth rate.

• Note that the assumption of random sampling implies

E(uiuj) = Cov(ui, uj) = 0, i ̸= j. (20)
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Statistical Properties of OLS: Unbiasedness

• Let us consider the expected value of β̂1. We have, from (14)–(17),

β̂1 =
∑
i

wiyi =
∑
i

xi − x̄

ns2x
yi

=
∑
i

xi − x̄

ns2x
(β0 + β1xi + ui), (21)

where in the second line we made use of Assumption 1 (correct model),
i.e., we just substituted β0 + β1xi + ui for yi; note that this involves the
true (but unknown and unobservable) β0, β1, and uis.

• Now, ∑
i

xi − x̄

ns2x
β0 =

β0

ns2x

∑
i

(xi − x̄) = 0,

∑
i

xi − x̄

ns2x
β1xi = β1

1

s2x

1

n

∑
i

(xi − x̄)xi︸ ︷︷ ︸
s2x

= β1.
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• Thus,

β̂1 = β1 +

n∑
i=1

wiui, (22)

and taking the expectation, employing Assumption 4, leads to

E(β̂1) = β1 +

n∑
i=1

wi E(ui)︸ ︷︷ ︸
=0

= β1. (23)

• For β̂0, we write, substituting β0 + β1x̄+ ū for ȳ (Assumption 1)

β̂0 = ȳ − β̂1x̄

= β0 + β1x̄+ ū− β̂1x̄

= β0 + ū+ (β1 − β̂1)x̄.

• Taking the expectation, and using that E(β̂1) = β1, we get

E(β̂0) = β0. (24)
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• Equations (23) and (24) imply that the OLS estimators β̂0 and β̂1 are
unbiased for β0 and β1.

• Note that homoskedasticty (Assumption 5) and (20) are not required for
establishing unbiasedness.
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Statistical Properties of OLS: Unbiasedness

• Recall what unbiasedness means:

• Unbiasedness means that if we could infinitely draw random samples from
our population, then on average we would obtain the correct estimates
of the parameters we are interested in.

• It does not mean that, for example, β̂1 = β1, or even that, for our
particular sample, β̂1 is very close to β1.
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Statistical Properties of OLS: Unbiasedness

• The objections to the unbiasedness criterion can be summarized by the
following story.1

• Three econometricians go duck hunting. The first shoots about a foot in
front of the duck, the second about a foot behind; the third yells “We
got it!”

1See, e.g., Peter Kennedy, A Guide to Econometrics, 6e, p. 30.
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Statistical Properties of OLS: Unbiasedness

• Still, however, unbiasedness is often deemed desirable, since we might
prefer an estimator with a sampling distribution centered over the true
parameter rather than one with a sampling distribution centered over
some other value.

• However, it is still possible to have an “unlucky” sample and thus a bad
estimate.

• Therefore, the unbiasedness criterion needs to be complemented by a
measure that tells us how probable an “unlucky” sample actually is.
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The Variances of the OLS Estimators

• Recall from above that

β̂1 = β1 +

n∑
i=1

wiui. (25)

• Also recall the following formula for the variance of a linear combination
of random variables y1, . . . , yn:

Var

(
n∑

i=1

aiyi

)
=

n∑
i=1

a2iVar(yi) + 2

n∑
i=1

∑
j<i

aiajCov(yi, yj). (26)

• However, when applied to (20), all the covariance terms in (26) turn out
to be zero due to (20).

• Moreover, due to homoskedasticity (Assumption 5), the variance of all
uis is just σ

2.
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• Hence

Var(β̂1) = σ2
n∑

i=1

w2
i = σ2

n∑
i=1

(xi − x̄)2

n2s4x
=

σ2

ns2x
.

• For β̂0, we can use the representation

β̂0 = ȳ − β̂1x̄,

which gives

Var(β̂0) = Var(ȳ) + x̄2Var(β̂1)− 2x̄Cov(ȳ, β̂1).

• For Cov(ȳ, β̂1), we find

Cov(ȳ, β̂1) = Cov

(
1

n

n∑
i=1

yi,

n∑
i=1

wiyi

)

=
σ2

n

n∑
i=1

wi = 0,
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and so

Var(β̂0) = Var(ȳ) + x̄2Var(β̂1)

=
σ2

n

(
1 +

x̄2

s2x

)
=

σ2x2

ns2x
,

since

s2x =
1

n

n∑
i=1

(xi − x̄)2 = x2 − x̄2.
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Gauß–Markov Theorem

• It turns out that the OLS estimator has several favorable properties when
compared to alternative estimators within a particular class.

• This is the class of estimators that are

– unbiased, and
– linear in the yis (or, equivalently, the uis).

• In this class, OLS has the smallest variance.

• This property is called BLUE (Best Linear Unbiased Estimator).

• This is the Gauß–Markov Theorem, which holds under Assumptions 1–5
(Gauß–Markov Assumptions) listed above.
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Estimation of the Error Variance

• To estimate the variances of β̂0 and β̂1, we need an estimate of σ2, i.e.,
the error variance.

• It turns out that

σ̂2 =
1

n− 2

n∑
i=1

û2
i (27)

is the appropriate estimator.

• (27) is unbiased, i.e.,
E(σ̂2) = σ2.
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Why we often assume that relationships are linear

• The “true” relationship between the variables may often be at least
approximately linear over the range of relevant values.

• This point is related to why the coefficient β̂ often has no meaningful
interpretation.

• For example, if, in a regression of wage on years of education, we estimate
a negative slope coefficient, this is not to be interpreted in the sense that
people without education receive negative wage.

• Realistically, most people have at least 8–10 years of education, but the
line that exhibits the best fit to the observations over the relevant range
does not go through the origin.

• This means, of course, that even if β0 has no substantial interpretation,
we must not ignore it in the applications of our model.
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Why we often assume that relationships are linear

• Even if this is not the case, we can often transform the variables in such
a way as to linearize the relationship.

• Consider the following example of the relationship between average GDP
and average lifespan for several countries (1984).
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Why we often assume that relationships are linear

• In economics, variables often appear in logarithmic form.

• For example, consider the equation

log(wage) = β0 + β1edu+ u, (28)

where edu is years of education.

• In this case, the equation says that (on average) each additional year of
education increases the wage by a constant percentage.

• Recall that

d log y

dy
=

1

y
⇒ ∆log y ≈ d log y =

dy

y
≈ ∆y

y
,

so that
∆log y = β1∆x,
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is an approximate measure of the percentage change of y in response to
the change ∆x in x, i.e.,

%∆y = (100× β1)∆x, (29)

where the multiplication by 100 is to get real percentages, e.g., 10%
instead of 0.1.

• If both variables are in logarithmic form,

log y = β0 + β1 log x+ u,

then we have (on average)

d log y

d log x
=

dy/y

dx/x
≈ ∆y/y

∆x/x
= β1,

so β1 measures the elasticity of y with respect to x, i.e.,

• β1 measures the percentage change in y when x increases by 1%.
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• This is often considered in price theory; for example, elasticity of demand
with respect to price or income.

• In Equation (28), coefficient β1 is also termed semi–elasticity, since it
measures the percentage change in y when x increases by one unit.

• The third possibility is that only x comes in log–form,

y = β0 + β1 log x+ u,

where β1/100 (approximately) measures the response in y in response to
a one–percent increase in x, since

∆y = β1∆log x =

(
β1

100

)
(100×∆log x) =

(
β1

100

)
%∆x,

where %∆x is measured in “real” percentages, e.g., 1% instead of 0.01.
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