Review of Matrix Algebra

1 Introduction

An matrix A of dimension $m \times n$ is a rectangular array of numbers with m rows and n columns, with the element in the *i*th row and *j*th being denoted by a_{ij} , $i = 1, \ldots, m$, $j = 1, \ldots, n$, that is

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$
 (1)

We may also write matrix \mathbf{A} in (1) in terms of its typical elements a_{ij} as $\mathbf{A} = [a_{ij}]_{i=1,\dots,m;j=1,\dots,n}$ or simply $[a_{ij}]$ if there is no ambiguity concerning its dimension.

1.1 Basic Definitions

The transpose of the m × n matrix A, denoted by A' (A prime), is the matrix obtained by interchanging the rows and columns of A, that is, if A is as in (1), then A' is the n × m matrix with typical element a'_{ij} given by

$$\mathbf{A}' = [a'_{ij}] = [a_{ji}]. \tag{2}$$

A matrix is equal to the transpose of its own transpose: $(\mathbf{A}')' = \mathbf{A}$.

- (2) A square matrix is a matrix where m = n.
- (3) A square matrix is symmetric if $\mathbf{A} = \mathbf{A}'$, that is, $a_{ij} = a_{ji}$. For example,

$$\boldsymbol{A} = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$
(3)

is a symmetric 3×3 matrix.

(4) A square matrix with all off-diagonal elements being zero is a *diagonal matrix*,i.e., for such a matrix

$$a_{ij} = \begin{cases} a_{ii} & \text{for } i = j \\ 0 & \text{for } i \neq j. \end{cases}$$
(4)

A special case of a diagonal matrix is the *identity matrix* of dimension n, I_n , where all the diagonal elements are equal to one, i.e.,

$$\boldsymbol{I}_{n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$
(5)

(5) A matrix with a single row is a row vector, and a matrix with a single column is a column vector.

1.2 Elementary operations: Summation and Multiplication

(1) Summation: If A and B are of the same order $m \times n$, then $m \times n$ matrix C = A + B is defined by

$$C = [c_{ij}] = [a_{ij} + b_{ij}].$$
(6)

- (3) Scalar multiplication: For $\alpha \in \mathbb{R}$, $\alpha \mathbf{A} = \alpha[a_{ij}] = [\alpha a_{ij}]$.
- (2) Matrix multiplication: Consider two *n*-dimensional vectors $\boldsymbol{a} = [a_1, \ldots, a_n]$ and $\boldsymbol{b} = [b_1, \ldots, b_n]$. The *inner product* of these vectors is given by

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \sum_{i=1}^{n} a_i b_i.$$
 (7)

Now consider matrices $A_{m \times n}$ and $B_{n \times p}$ of dimensions $m \times n$ and $n \times p$, respectively, where it is crucial that the number of columns of A is equal to the number of rows of B. Write these matrices in terms of their row and column vectors, respectively, as

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \\ \vdots \\ \boldsymbol{a}_m \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 & \dots & \boldsymbol{b}_p \end{bmatrix}, \quad (8)$$

where $\boldsymbol{a}_i = [a_{i1}, a_{i2}, \dots, a_{in}], i = 1, \dots, m$, and $\boldsymbol{b}_j = [b_{1j}, b_{2j}, \dots, b_{nj}]', j = 1, \dots, p$. Then the product $\boldsymbol{C}_{m \times p} = \boldsymbol{A}_{m \times n} \boldsymbol{B}_{n \times p}$ is defined by the $m \times p$ matrix

$$\boldsymbol{C} = [c_{ij}]_{i=1,\dots,n;j=1,\dots,p} = [\langle \boldsymbol{a}_i, \boldsymbol{b}_j \rangle]_{i=1,\dots,n;j=1,\dots,p} = \left[\sum_{\ell=1}^n a_{i\ell} b_{\ell j}\right]_{i=1,\dots,n;j=1,\dots,p}.$$
 (9)

For example, when

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 3 & 4 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 4 & 5 \\ 3 & 2 \\ 1 & 6 \end{bmatrix}, \quad (10)$$

then $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$ is the 2 × 2 matrix

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 3 & 2 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 1 \times 4 + 2 \times 3 + 3 \times 1 & 1 \times 5 + 2 \times 2 + 3 \times 6 \\ 4 \times 4 + 3 \times 3 + 4 \times 1 & 4 \times 5 + 3 \times 2 + 4 \times 6 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 27 \\ 29 & 50 \end{bmatrix}.$$

If column vectors $\boldsymbol{a} = [a_1, \ldots, a_n]'$ and $\boldsymbol{b} = [b_1, \ldots, b_m]'$, then, if m = n, the *inner* product

$$\boldsymbol{a}'\boldsymbol{b} = \sum_{i=1}^{n} a_i b_i,\tag{11}$$

and the outer product of \boldsymbol{a} and \boldsymbol{b} is the $n \times m$ matrix

$$\boldsymbol{ab'} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} [b_1, b_2, \dots, b_m] = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_m \\ a_2b_1 & a_2b_2 & \cdots & a_2b_m \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_m \end{bmatrix}.$$
 (12)

The following rules are straightforward to verify:

- (a) For conformable matrices A, B, and C, A(B+C) = AB + AC and (AB)C = A(BC), but in general $AB \neq BA$.
- (b) $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$ For example, for the matrices in (10), we have

$$\boldsymbol{B}'\boldsymbol{A}' = \begin{bmatrix} 4 & 5 \\ 3 & 2 \\ 1 & 6 \end{bmatrix}' \begin{bmatrix} 1 & 2 & 3 \\ 4 & 3 & 4 \end{bmatrix}' = \begin{bmatrix} 4 & 3 & 1 \\ 5 & 2 & 6 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 13 & 29 \\ 27 & 50 \end{bmatrix} = (\boldsymbol{A}\boldsymbol{B})'.$$

(c) For any $m \times n$ matrix \mathbf{A} , $\mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}$, where \mathbf{I}_n is the identity of dimension n, as defined in (5).

The *n* nonzero vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_n$ are orthogonal if $\boldsymbol{x}'_i \boldsymbol{x}_j = 0$ whenever $i \neq j$, and orthonormal if, in addition, $\boldsymbol{x}'_i \boldsymbol{x}_i = 1$ for $i = 1, \ldots, n$. Clearly a set of orthogonal vectors can always be made orthonormal by scaling.

An $n \times n$ Matrix **A** is orthogonal if

$$\boldsymbol{A}'\boldsymbol{A} = \boldsymbol{I},\tag{13}$$

i.e., if its columns and rows (viewed as vectors) are orthonormal.

2 Linear Independence and Rank

A set of *n*-dimensional vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_m$ is *linearly independent* if

$$\sum_{i=1}^{m} c_i \boldsymbol{x}_i = \boldsymbol{0} \tag{14}$$

implies $c_1 = c_2 = \cdots = c_m = 0$. Equivalently, the vectors are linearly independent if none can be written as a linear combination of the other vectors. Otherwise they are linearly dependent.

For example, vectors $e_1 = [1, 0]'$ and $e_2 = [0, 1]'$ are linearly independent, since

$$c_1 \begin{bmatrix} 1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
(15)

implies $c_1 = c_2 = 0$. It follows by the same argument that the columns (or rows) of the *n*-dimensional identity matrix are linearly independent, and they form the *canonical basis* of \mathbb{R}^n . As an example for linearly dependent vectors, consider $\boldsymbol{x}_1 = [1, 2]'$ and $\boldsymbol{x}_2 = [2, 4]'$. Here $\boldsymbol{x}_2 = 2\boldsymbol{x}_1$, so the linear combination (14) is zero for $c_1 = -2c_2$. Clearly two vectors are in general linearly dependent if one vector is a multiple of the other, since then $\boldsymbol{x}_1 = -(c_2/c_1)\boldsymbol{x}_2$.

An important property of a matrix is the number of linearly independent columns (which is equal to the number of linearly independent rows). This is the *rank* of an $m \times n$ matrix \mathbf{A} , denoted $r(\mathbf{A})$. Clearly $r(\mathbf{A}) \leq \min\{m, n\}$. Further properties of the rank:

- R1: $r(\boldsymbol{AB}) \leq \min\{r(\boldsymbol{A}), r(\boldsymbol{B})\}.$
- R2: $r(\mathbf{A}) = r(\mathbf{A}') = r(\mathbf{A}'\mathbf{A}) = r(\mathbf{A}\mathbf{A}').$

2.1 Nonsingularity and Inverse

A square $n \times n$ matrix is nonsingular if it has full rank, i.e., its rank is n. Then (and only then) there exists a unique $n \times n$ matrix \boldsymbol{B} such that $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{B}\boldsymbol{A} = \boldsymbol{I}$, which is the *inverse* of \boldsymbol{A} and denoted as \boldsymbol{A}^{-1} . The solution of a system of n linear equations with n unknowns $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ can then be written as $\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b}$. The linear system has a unique solution if and only if \boldsymbol{A} is nonsingular, and if and only if the system $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ has only the solution $\boldsymbol{x} = \boldsymbol{0}$, i.e., for $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ to have a nontrivial solution ($\boldsymbol{x} \neq \boldsymbol{0}$), we must have $\det(\boldsymbol{A}) = 0$.

For example, if

$$\boldsymbol{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix},\tag{16}$$

then \boldsymbol{A} is nonsingular if $det(\boldsymbol{A}) = |\boldsymbol{A}| = ad - bc \neq 0$ and, in this case,

$$\boldsymbol{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$
 (17)

Useful properties:

- N1: $(A^{-1})^{-1} = A$
- N2: $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$, that is, the inverse of the transpose is the transpose of the inverse.
- N3: Matrix A is nonsingular if and only if its determinant is different from zero.
- N4: For A an $m \times n$ matrix and P and Q nonsingular $m \times m$ and $n \times n$ matrices, respectively, we have

$$r(\boldsymbol{A}) = r(\boldsymbol{P}\boldsymbol{A}) = r(\boldsymbol{A}\boldsymbol{Q}) = r(\boldsymbol{P}\boldsymbol{A}\boldsymbol{Q}).$$
(18)

N5: If matrices A and B are nonsingular and of the same order, $(AB)^{-1} = B^{-1}A^{-1}$, which can easily be extended to more than two matrices, e.g., $(ABC)^{-1} = C^{-1}(AB)^{-1} = C^{-1}B^{-1}A^{-1}$.

3 Trace

For an $n \times n$ matrix \mathbf{A} , the trace, denoted as $tr(\mathbf{A})$, is the sum of the elements on the main diagonal, that is

$$\operatorname{tr} \mathbf{A} = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}.$$
 (19)

Clearly $tr(\alpha A) = \alpha tr A$, and tr(A + B) = tr A + tr B. Calculations also show that

$$tr(\boldsymbol{A}\boldsymbol{B}) = tr(\boldsymbol{B}\boldsymbol{A}),\tag{20}$$

which gives rise to the law of cyclical permutations, i.e., for conformable matrices,

$$tr(\boldsymbol{ABC}) = tr(\boldsymbol{CAB}) = tr(\boldsymbol{BCA}).$$
(21)

4 Eigenvalues and Eigenvectors

An *eigenvalue* of an $n \times n$ matrix **A** is a (real or complex) scalar λ satisfying the equation

$$\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x} \tag{22}$$

for some nonzero $n \times 1$ vector \boldsymbol{x} , which is called an eigenvector of \boldsymbol{A} . An eigenvector obviously is determined only up to a scalar multiple, since Equation (22) will also be satisfied for $\alpha \boldsymbol{x}$, $\alpha \neq 0$. Also, $\boldsymbol{x} \neq \boldsymbol{0}$ is assumed since (22) is satisfied for any λ if \boldsymbol{x} is the zero vector.

Equation (22) can also be written as

$$(\lambda \boldsymbol{I} - \boldsymbol{A})\boldsymbol{x} = \boldsymbol{0},\tag{23}$$

which means that we require

$$\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = 0, \tag{24}$$

which is a polynomial of degree n in λ , called the *characteristic equation* of matrix A. Thus, an $n \times n$ matrix A will have n (real or complex) eigenvalues, counting multiplicities.

For example, for the 2×2 matrix (16), we have the characteristic equation

$$det(\lambda \boldsymbol{I} - \boldsymbol{A}) = det \begin{bmatrix} \lambda - a & -b \\ -c & \lambda - d \end{bmatrix} = (\lambda - a)(\lambda - d) - bc$$
$$= \lambda^2 - (a + d)\lambda + ad - bc = \lambda^2 - tr\boldsymbol{A}\lambda + det(\boldsymbol{A}) = 0,$$

with solutions

$$\lambda_{1/2} = \frac{\mathrm{tr}\boldsymbol{A} \pm \sqrt{\mathrm{tr}\boldsymbol{A}^2 - 4\det\boldsymbol{A}}}{2},\tag{25}$$

which shows that $\lambda_1 + \lambda_2 = \text{tr} \boldsymbol{A}$ and $\lambda_1 \lambda_2 = \det \boldsymbol{A}$. This is generally true, i.e., the sum of the eigenvalues of any square matrix is equal to its trace, and the product of the eigenvalues is equal to its determinant.

5 Symmetric Matrices

5.1 Quadratic Forms

Let A be a symmetric $n \times n$ matrix. The quadratic form associated with A is the function

$$f(\boldsymbol{x}) = \boldsymbol{x}' \boldsymbol{A} \boldsymbol{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{ij} = \sum_{i=1}^{n} x_i^2 a_{ii} + \sum_{i=1}^{n} \sum_{j \neq i} x_i x_j a_{ij}$$
(26)

$$= \sum_{i=1}^{n} x_i^2 a_{ii} + 2 \sum_i \sum_{j < i} x_i x_j a_{ij}, \quad \boldsymbol{x} \in \mathbb{R}^n.$$

$$(27)$$

Clearly a quadratic form is always equal to zero if \boldsymbol{x} is the zero vector.

Matrix A and the associated quadratic form are said to be

- (a) positive definite if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for any vector $\mathbf{x} \neq \mathbf{0}$, and
- (b) positive semidefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0$ for any vector \mathbf{x} .

Negative definite and negative semidefinite matrices are analogously defined, and a matrix is indefinite if it is neither positive nor negative semidefinite.

- (i) If A is a positive definite matrix, then it is nonsingular, and the inverse of A is also positive definite.
- (ii) if A is $m \times n$, then A'A is positive semidefinite. If A has rank n, then A'A is positive definite.
- (iii) Symmetric matrix is positive definite if and only if all eigenvalues are positive.
- (iv) If A is positive definite, then -A is negative definite.

The 2×2 matrix

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$
(28)

is positive definite if and only if

$$a_{11} > 0, \quad a_{11}a_{22} - a_{12}^2 > 0.$$
 (29)

To see this, note that

$$\begin{aligned} \boldsymbol{x}' \boldsymbol{A} \boldsymbol{x} &= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ &= x_1^2 a_1 1 + 2x_1 x_2 a_{12} + x_2^2 a_2 2 \\ &= a_{11} \left(x_1^2 + 2x_1 x_2 \frac{a_{12}}{a_{11}} + x_2^2 \frac{a_{12}^2}{a_{11}^2} \right) + x_2^2 a_{22} - x_2^2 \frac{a_{12}^2}{a_{11}} \\ &= a_{11} \left(x_1 + x_2 \frac{a_{12}}{a_{11}} \right)^2 + x_2^2 \frac{a_{11} a_{22} - a_{12}^2}{a_{11}}. \end{aligned}$$

Example 1 (Covariance matrices) Recall that the variance of a random variable X is defined by

$$var(X) = E\{(X - \mu)^2\} = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx,$$
(30)

where $\mu = \int x f_X(x) dx$ is the mean (or expectation) of X and f_X is the probability density function (pdf) of X. Now suppose we have a pair of random variables X_1 and X_2 , then the covariance between X_1 and X_2 , a measure of (linear) dependence, is defined by

$$cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1 X_2) - \mu_1 \mu_2.$$
 (31)

Now consider random vector $\boldsymbol{x} = [X_1, X_2, \dots, X_n]'$. The expectation $E\boldsymbol{x}$ is just the column vector $[\mu_1, \dots, \mu_n]'$, where $\mu_i = E(X_i)$, $i = 1, \dots, n$. The covariance matrix (or variance-covariance matrix) of the random vector \boldsymbol{x} is

$$V = cov(\boldsymbol{x}) = E[(\boldsymbol{x} - E\boldsymbol{x})(\boldsymbol{x} - E\boldsymbol{x})']$$

$$\left(\begin{bmatrix} X_1 - \mu_1 \end{bmatrix} \right)$$
(32)

$$= E \left\{ \begin{array}{ccc} X_{2} - \mu_{2} \\ \vdots \\ X_{2} - \mu_{2} \\ \vdots \\ X_{1} - \mu_{1} & X_{2} - \mu_{2} & \cdots & X_{n} - \mu_{n} \end{array} \right\}$$
(33)

$$\left(\begin{bmatrix} X_{n} - \mu_{n} \end{bmatrix} \right)^{*} = \begin{bmatrix} E(X_{1} - \mu_{1})^{2} & E(X_{1} - \mu_{1})(X_{2} - \mu_{2}) & \cdots & E(X_{1} - \mu_{1})(X_{n} - \mu_{n}) \\ E(X_{2} - \mu_{2})(X_{1} - \mu_{1}) & E(X_{2} - \mu_{2})^{2} & \cdots & E(X_{2} - \mu_{2})(X_{n} - \mu_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ E(X_{n} - \mu_{n})(X_{1} - \mu_{1}) & E(X_{n} - \mu_{n})(X_{2} - \mu_{2}) & \cdots & E(X_{n} - \mu_{n})^{2} \end{bmatrix}$$

$$= \begin{bmatrix} var(X_{1}) & cov(X_{1}, X_{2}) & \cdots & cov(X_{1}, X_{n}) \\ cov(X_{1}, X_{2}) & var(X_{2}) & \cdots & cov(X_{2}, X_{n}) \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

$$(34)$$

$$cov(X_1, X_n) \quad cov(X_2, X_n) \quad \cdots \quad var(X_n)$$

Recall that a linear combination of random variables, such as

$$Y = \boldsymbol{a}'\boldsymbol{x} = \sum_{i=1}^{n} a_i X_i \tag{36}$$

has expectation

$$E(Y) = E\left\{\sum_{i=1}^{n} a_i X_i\right\} = \sum_{i=1}^{n} a_i E(X_i) = \boldsymbol{a}' E \boldsymbol{x}.$$
(37)

The variance of Y defined by (36) is

$$0 \le var(Y) = E\left\{ (Y - EY)^2 \right\} = E\left\{ \left(\sum_{i=1}^n a_i (X_i - \mu_i) \right)^2 \right\}$$
(38)

$$= E\left\{\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}(X_{i}-\mu_{i})(X_{j}-\mu_{j})\right\}$$
(39)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_j a_j E(X_i - \mu_i)(X_j - \mu_j)$$
(40)

$$= \sum_{i=1}^{n} a_i^2 \operatorname{var}(X_i) + \sum_i \sum_{j \neq i} a_i a_j \operatorname{cov}(X_i, X_j)$$
(41)

$$= a' V a. \tag{42}$$

This shows that the variance of a linear combination of random variables can be written as a quadratic form in the covariance matrix of these variables, and since a variance is nonnegative (positive if the variable is not a constant), we see that covariance matrices are always positive semidefinite, and they are positive definite unless there exists $a \neq 0$ such that the linear combination a'x is a constant.

For two random variables X and Y, the covariance matrix is

$$\mathbf{V} = \begin{bmatrix} var(X) & cov(X,Y) \\ cov(X,Y) & var(Y) \end{bmatrix} =: \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix}.$$
 (43)

From (29) and the positive (semi)definiteness of covariance matrices, it follows that

$$\sigma_X \sigma_Y = \sqrt{\sigma_X^2 \sigma_Y^2} \ge |\sigma_{XY}|,\tag{44}$$

which among other things implies that the correlation coefficient

$$corr(X,Y) = \rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \in [-1,1].$$
 (45)

 $|\rho| = 1$ if and only if the variables are linearly dependent, i.e., each can be written as a linear function of the other.

5.2 Choleski Decomposition of Positive Definite Matrices

Suppose random variable X has mean μ and variance σ^2 . Then by standardizing X we get a variable with mean zero and unit variance,

$$Z = \frac{X - \mu}{\sigma}.$$
(46)

The same can be done for a random vector \boldsymbol{x} with mean vector $\boldsymbol{\mu}$ and covariance matrix \boldsymbol{V} .

This is based on the following result: (Choleski Decomposition) If \mathbf{A} is an $n \times n$ positive definite symmetric matrix, there is a nonsingular lower triangular matrix \mathbf{C} with positive diagonal elements such that $\mathbf{CC'}$.

Note that C may be viewed as the "matrix root" of A. As a simple example, consider the matrix

$$\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{3} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & \sqrt{3} \end{bmatrix}.$$
 (47)

Now let V = CC', so that $V^{-1} = C'^{-1}C^{-1}$. Consider the random vector $z = C^{-1}(x - \mu)$, which has zero mean vector, so the covariance matrix of z is

$$\operatorname{cov}(\boldsymbol{z}) = \operatorname{E}(\boldsymbol{z}\boldsymbol{z}') = \operatorname{E}\{\boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})'\boldsymbol{C}'^{-1}\}$$
(48)

$$= \boldsymbol{C}^{-1} \mathrm{E}\{(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})'\} \boldsymbol{C}'^{-1}$$
(49)

$$= C^{-1}VC'^{-1}$$
 (50)

$$= C^{-1}CC'C'^{-1}$$
(51)

$$= I, (52)$$

the identity matrix, i.e., the variables are uncorrelated with unit variance.

In general, if random vector \boldsymbol{x} is an $n \times 1$ random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix \boldsymbol{V} , then the vector $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}$ has mean vector $\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}$ and covariance matrix $\boldsymbol{A}\boldsymbol{V}\boldsymbol{A}'$, the calculation of this being basically the same as in (48). Moreover, if \boldsymbol{x} has a multivariate normal distribution, written $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{V})$, then, as linear combinations of normally distributed random variables are likewise normally distributed, we have

$$\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b} \sim N(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{A}\boldsymbol{V}\boldsymbol{A}'). \tag{53}$$

6 Vector and Matrix Differentiation

For function

$$y = f(\boldsymbol{x}) = f(x_1, \dots, x_n), \tag{54}$$

the gradient is the column vector

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left[\begin{array}{c} \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \end{array} \right]', \tag{55}$$

and the (symmetric under mild conditions) Hessian matrix of second derivatives

$$\boldsymbol{H} = \frac{\partial^2 f}{\partial \boldsymbol{x} \partial \boldsymbol{x}'} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$
(56)

We are interest in derivatives of linear and quadratic forms. If

$$f(\boldsymbol{x}) = \boldsymbol{a}'\boldsymbol{x} = \sum_{i=1}^{n} a_i x_i,$$
(57)

then

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \boldsymbol{a}.$$
(58)

If

$$f(\boldsymbol{x}) = \boldsymbol{x}' \boldsymbol{A} \boldsymbol{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j,$$
(59)

we observe that for general \boldsymbol{A}

$$\frac{\partial f(\boldsymbol{x})}{\partial x_{\ell}} = 2a_{\ell\ell}x_{\ell} + \sum_{i \neq \ell} a_{i\ell}x_i + \sum_{j \neq \ell} a_{\ell j}x_j$$
(60)

$$= \sum_{i=1}^{n} a_{i\ell} x_i + \sum_{j=1}^{n} a_{\ell j} x_j$$
(61)

which can be identified as the ℓ th element of the vector Ax + A'x = (A + A')x; hence

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = (\boldsymbol{A} + \boldsymbol{A}')\boldsymbol{x}.$$
(62)

The case of a symmetric A is of particular interest in our applications. Since a square matrix A is symmetric exactly if A = A', we have

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = 2\boldsymbol{A}\boldsymbol{x},\tag{63}$$

in this case, and the Hessian is

$$\frac{\partial^2 f}{\partial \boldsymbol{x} \partial \boldsymbol{x}'} = 2\boldsymbol{A}.$$
(64)

For a function of the (bilinear) form

$$f(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{y}' \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}' \boldsymbol{A}' \boldsymbol{y}, \tag{65}$$

we have from (58) that

$$\frac{\partial f}{\partial \boldsymbol{x}} = \boldsymbol{A}' \boldsymbol{y},\tag{66}$$

and

$$\frac{\partial f}{\partial \boldsymbol{y}} = \boldsymbol{A}\boldsymbol{x}.$$
(67)

For a function $f(\boldsymbol{x})$ to have a local minimum or maximum at a point \boldsymbol{x}_0 , its gradient must vanish in this point. Moreover, such a point is

- (i) a local maximum if the Hessian evaluated at this point is negative definite,
- (ii) a local minimum if the Hessian evaluated at this point is positive definite.