
Review of Matrix Algebra

1 Introduction

An matrix A of dimension m × n is a rectangular array of numbers with m rows and

n columns, with the element in the ith row and jth being denoted by aij, i = 1, . . . ,m,

j = 1, . . . , n, that is

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 . (1)

We may also write matrixA in (1) in terms of its typical elements aij asA = [aij]i=1,...,m;j=1,...,n

or simply [aij] if there is no ambiguity concerning its dimension.

1.1 Basic Definitions

(1) The transpose of the m × n matrix A, denoted by A′ (A prime), is the matrix

obtained by interchanging the rows and columns of A, that is, if A is as in (1),

then A′ is the n×m matrix with typical element a′ij given by

A′ = [a′ij] = [aji]. (2)

A matrix is equal to the transpose of its own transpose: (A′)′ = A.

(2) A square matrix is a matrix where m = n.

(3) A square matrix is symmetric if A = A′, that is, aij = aji. For example,

A =


3 1 −1

1 3 −1

−1 −1 5

 (3)

is a symmetric 3× 3 matrix.
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(4) A square matrix with all off–diagonal elements being zero is a diagonal matrix,

i.e., for such a matrix

aij =

aii for i = j

0 for i ̸= j.
(4)

A special case of a diagonal matrix is the identity matrix of dimension n, In, where

all the diagonal elements are equal to one, i.e.,

In =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


. (5)

(5) A matrix with a single row is a row vector, and a matrix with a single column is

a column vector.

1.2 Elementary operations: Summation and Multiplication

(1) Summation: IfA andB are of the same orderm×n, thenm×nmatrixC = A+B

is defined by

C = [cij] = [aij + bij]. (6)

(3) Scalar multiplication: For α ∈ R, αA = α[aij] = [αaij].

(2) Matrix multiplication: Consider two n–dimensional vectors a = [a1, . . . , an] and

b = [b1, . . . , bn]. The inner product of these vectors is given by

⟨a, b⟩ =
n∑

i=1

aibi. (7)

Now consider matricesAm×n andBn×p of dimensionsm×n and n×p, respectively,

where it is crucial that the number of columns of A is equal to the number of rows

of B. Write these matrices in terms of their row and column vectors, respectively,
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as

A =


a1

a2

...

am

 , B =
[
b1 b2 . . . bp

]
, (8)

where ai = [ai1, ai2, . . . , ain], i = 1, . . . ,m, and bj = [b1j, b2j, . . . , bnj]
′, j = 1, . . . , p.

Then the product Cm×p = Am×nBn×p is defined by the m× p matrix

C = [cij]i=1,...,n;j=1,...,p = [⟨ai, bj⟩]i=1,...,n;j=1,...,p =

[
n∑

ℓ=1

aiℓbℓj

]
i=1,...,n;j=1,...,p

. (9)

For example, when

A =

 1 2 3

4 3 4

 , B =


4 5

3 2

1 6

 , (10)

then C = AB is the 2× 2 matrix

AB =

 1 2 3

4 3 4




4 5

3 2

1 6

 =

 1× 4 + 2× 3 + 3× 1 1× 5 + 2× 2 + 3× 6

4× 4 + 3× 3 + 4× 1 4× 5 + 3× 2 + 4× 6



=

 13 27

29 50

 .

If column vectors a = [a1, . . . , an]
′ and b = [b1, . . . , bm]

′, then, if m = n, the inner

product

a′b =
n∑

i=1

aibi, (11)

and the outer product of a and b is the n×m matrix

ab′ =


a1

a2
...

an

 [b1, b2, . . . , bm] =


a1b1 a1b2 · · · a1bm

a2b1 a2b2 · · · a2bm
...

...
. . .

...

anb1 anb2 · · · anbm

 . (12)
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The following rules are straightforward to verify:

(a) For conformable matrices A, B, and C, A(B +C) = AB +AC and (AB)C =

A(BC), but in general AB ̸= BA.

(b) (AB)′ = B′A′ For example, for the matrices in (10), we have

B′A′ =


4 5

3 2

1 6


′  1 2 3

4 3 4

′

=

 4 3 1

5 2 6




1 4

2 3

3 4

 =

 13 29

27 50

 = (AB)′.

(c) For any m×n matrix A, ImA = AIn = A, where In is the identity of dimension

n, as defined in (5).

The n nonzero vectors x1,x2, . . . ,xn are orthogonal if x′
ixj = 0 whenever i ̸= j, and

orthonormal if, in addition, x′
ixi = 1for i = 1, . . . , n. Clearly a set of orthogonal vectors

can always be made orthonormal by scaling.

An n× n Matrix A is orthogonal if

A′A = I, (13)

i.e., if its columns and rows (viewed as vectors) are orthonormal.

2 Linear Independence and Rank

A set of n–dimensional vectors x1,x2, . . . ,xm is linearly independent if

m∑
i=1

cixi = 0 (14)

implies c1 = c2 = · · · = cm = 0. Equivalently, the vectors are linearly independent if

none can be written as a linear combination of the other vectors. Otherwise they are

linearly dependent.

For example, vectors e1 = [1, 0]′ and e2 = [0, 1]′ are linearly independent, since

c1

 1

0

+ c2

 0

1

 =

 c1

c2

 =

 0

0

 (15)
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implies c1 = c2 = 0. It follows by the same argument that the columns (or rows) of the

n–dimensional identity matrix are linearly independent, and they form the canonical

basis of Rn. As an example for linearly dependent vectors, consider x1 = [1, 2]′ and

x2 = [2, 4]′. Here x2 = 2x1, so the linear combination (14) is zero for c1 = −2c2.

Clearly two vectors are in general linearly dependent if one vector is a multiple of the

other, since then x1 = −(c2/c1)x2.

An important property of a matrix is the number of linearly independent columns

(which is equal to the number of linearly independent rows). This is the rank of an

m × n matrix A, denoted r(A). Clearly r(A) ≤ min{m,n}. Further properties of the

rank:

R1: r(AB) ≤ min{r(A), r(B)}.

R2: r(A) = r(A′) = r(A′A) = r(AA′).

2.1 Nonsingularity and Inverse

A square n × n matrix is nonsingular if it has full rank, i.e., its rank is n. Then (and

only then) there exists a unique n × n matrix B such that AB = BA = I, which is

the inverse of A and denoted as A−1. The solution of a system of n linear equations

with n unknowns Ax = b can then be written as x = A−1b. The linear system has a

unique solution if and only if A is nonsingular, and if and only if the system Ax = 0

has only the solution x = 0, i.e., for Ax = 0 to have a nontrivial solution (x ̸= 0), we

must have det(A) = 0.

For example, if

A =

 a b

c d

 , (16)

then A is nonsingular if det(A) = |A| = ad− bc ̸= 0 and, in this case,

A−1 =
1

ad− bc

 d −b

−c a

 . (17)

Useful properties:
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N1: (A−1)−1 = A

N2: (A′)−1 = (A−1)′, that is, the inverse of the transpose is the transpose of the

inverse.

N3: Matrix A is nonsingular if and only if its determinant is different from zero.

N4: For A an m × n matrix and P and Q nonsingular m × m and n × n matrices,

respectively, we have

r(A) = r(PA) = r(AQ) = r(PAQ). (18)

N5: If matrices A and B are nonsingular and of the same order, (AB)−1 = B−1A−1,

which can easily be extended to more than two matrices, e.g., (ABC)−1 =

C−1(AB)−1 = C−1B−1A−1.

3 Trace

For an n× n matrix A, the trace, denoted as tr(A), is the sum of the elements on the

main diagonal, that is

trA = a11 + a22 + · · ·+ ann =
n∑

i=1

aii. (19)

Clearly tr(αA) = αtrA, and tr(A+B) = trA+ trB. Calculations also show that

tr(AB) = tr(BA), (20)

which gives rise to the law of cyclical permutations, i.e., for conformable matrices,

tr(ABC) = tr(CAB) = tr(BCA). (21)

4 Eigenvalues and Eigenvectors

An eigenvalue of an n×n matrixA is a (real or complex) scalar λ satisfying the equation

Ax = λx (22)
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for some nonzero n × 1 vector x, which is called an eigenvector of A. An eigenvector

obviously is determined only up to a scalar multiple, since Equation (22) will also be

satisfied for αx, α ̸= 0. Also, x ̸= 0 is assumed since (22) is satisfied for any λ if x is

the zero vector.

Equation (22) can also be written as

(λI −A)x = 0, (23)

which means that we require

det(λI −A) = 0, (24)

which is a polynomial of degree n in λ, called the characteristic equation of matrix

A. Thus, an n × n matrix A will have n (real or complex) eigenvalues, counting

multiplicities.

For example, for the 2× 2 matrix (16), we have the characteristic equation

det(λI −A) = det

 λ− a −b

−c λ− d

 = (λ− a)(λ− d)− bc

= λ2 − (a+ d)λ+ ad− bc = λ2 − trAλ+ det(A) = 0,

with solutions

λ1/2 =
trA±

√
trA2 − 4 detA

2
, (25)

which shows that λ1 + λ2 = trA and λ1λ2 = detA. This is generally true, i.e., the

sum of the eigenvalues of any square matrix is equal to its trace, and the product of the

eigenvalues is equal to its determinant.
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5 Symmetric Matrices

5.1 Quadratic Forms

Let A be a symmetric n × n matrix. The quadratic form associated with A is the

function

f(x) = x′Ax =
n∑

i=1

n∑
j=1

xixjaij =
n∑

i=1

x2
i aii +

n∑
i=1

∑
j ̸=i

xixjaij (26)

=
n∑

i=1

x2
i aii + 2

∑
i

∑
j<i

xixjaij, x ∈ Rn. (27)

Clearly a quadratic form is always equal to zero if x is the zero vector.

Matrix A and the associated quadratic form are said to be

(a) positive definite if x′Ax > 0 for any vector x ̸= 0, and

(b) positive semidefinite if x′Ax ≥ 0 for any vector x.

Negative definite and negative semidefinite matrices are analogously defined, and a

matrix is indefinite if it is neither positive nor negative semidefinite.

(i) If A is a positive definite matrix, then it is nonsingular, and the inverse of A is

also positive definite.

(ii) if A is m × n, then A′A is positive semidefinite. If A has rank n, then A′A is

positive definite.

(iii) Symmetric matrix is positive definite if and only if all eigenvalues are positive.

(iv) If A is positive definite, then −A is negative definite.

The 2× 2 matrix

A =

 a11 a12

a12 a22

 (28)

is positive definite if and only if

a11 > 0, a11a22 − a212 > 0. (29)

8



To see this, note that

x′Ax =
[
x1 x2

] a11 a12

a12 a22

 x1

x2


= x2

1a11 + 2x1x2a12 + x2
2a22

= a11

(
x2
1 + 2x1x2

a12
a11

+ x2
2

a212
a211

)
+ x2

2a22 − x2
2

a212
a11

= a11

(
x1 + x2

a12
a11

)2

+ x2
2

a11a22 − a212
a11

.

Example 1 (Covariance matrices) Recall that the variance of a random variable X is

defined by

var(X) = E{(X − µ)2} =

∫ ∞

−∞
(x− µX)

2fX(x)dx, (30)

where µ =
∫
xfX(x)dx is the mean (or expectation) of X and fX is the probability

density function (pdf) of X. Now suppose we have a pair of random variables X1 and

X2, then the covariance between X1 and X2, a measure of (linear) dependence, is defined

by

cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] = E(X1X2)− µ1µ2. (31)

Now consider random vector x = [X1, X2, . . . , Xn]
′. The expectation Ex is just the

column vector [µ1, . . . , µn]
′, where µi = E(Xi), i = 1, . . . .n. The covariance matrix (or

variance–covariance matrix) of the random vector x is

V = cov(x) = E[(x− Ex)(x− Ex)′] (32)

= E




X1 − µ1

X2 − µ2

...

Xn − µn


[
X1 − µ1 X2 − µ2 · · · Xn − µn

]


(33)

=

 E(X1−µ1)2 E(X1−µ1)(X2−µ2) ··· E(X1−µ1)(Xn−µn)

E(X2−µ2)(X1−µ1) E(X2−µ2)2 ··· E(X2−µ2)(Xn−µn)

...
...

...
...

E(Xn−µn)(X1−µ1) E(Xn−µn)(X2−µ2) ··· E(Xn−µn)2

 (34)

=


var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X1, X2) var(X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(X1, Xn) cov(X2, Xn) · · · var(Xn)

 (35)
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Recall that a linear combination of random variables, such as

Y = a′x =
n∑

i=1

aiXi (36)

has expectation

E(Y ) = E

{
n∑

i=1

aiXi

}
=

n∑
i=1

aiE(Xi) = a′Ex. (37)

The variance of Y defined by (36) is

0 ≤ var(Y ) = E
{
(Y − EY )2

}
= E


(

n∑
i=1

ai(Xi − µi)

)2
 (38)

= E

{
n∑

i=1

n∑
j=1

aiaj(Xi − µi)(Xj − µj)

}
(39)

=
n∑

i=1

n∑
j=1

ajajE(Xi − µi)(Xj − µj) (40)

=
n∑

i=1

a2i var(Xi) +
∑
i

∑
j ̸=i

aiajcov(Xi, Xj) (41)

= a′V a. (42)

This shows that the variance of a linear combination of random variables can be written

as a quadratic form in the covariance matrix of these variables, and since a variance is

nonnegative (positive if the variable is not a constant), we see that covariance matrices

are always positive semidefinite, and they are positive definite unless there exists a ̸= 0

such that the linear combination a′x is a constant.

For two random variables X and Y , the covariance matrix is

V =

 var(X) cov(X, Y )

cov(X, Y ) var(Y )

 =:

 σ2
X σXY

σXY σ2
Y

 . (43)

From (29) and the positive (semi)definiteness of covariance matrices, it follows that

σXσY =
√

σ2
Xσ

2
Y ≥ |σXY |, (44)

which among other things implies that the correlation coefficient

corr(X, Y ) = ρXY =
σXY

σXσY

∈ [−1, 1]. (45)
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|ρ| = 1 if and only if the variables are linearly dependent, i.e., each can be written as a

linear function of the other.

5.2 Choleski Decomposition of Positive Definite Matrices

Suppose random variable X has mean µ and variance σ2. Then by standardizing X we

get a variable with mean zero and unit variance,

Z =
X − µ

σ
. (46)

The same can be done for a random vector x with mean vector µ and covariance matrix

V .

This is based on the following result: (Choleski Decomposition) If A is an n × n

positive definite symmetric matrix, there is a nonsingular lower triangular matrix C

with positive diagonal elements such that CC ′.

Note thatC may be viewed as the “matrix root” ofA. As a simple example, consider

the matrix  4 2

2 4

 =

 2 0

1
√
3

 2 1

0
√
3

 . (47)

Now let V = CC ′, so that V −1 = C ′−1C−1. Consider the random vector z = C−1(x−
µ), which has zero mean vector, so the covariance matrix of z is

cov(z) = E(zz′) = E{C−1(x− µ)(x− µ)′C ′−1} (48)

= C−1E{(x− µ)(x− µ)′}C ′−1 (49)

= C−1V C ′−1 (50)

= C−1CC′C ′−1 (51)

= I, (52)

the identity matrix, i.e., the variables are uncorrelated with unit variance.

In general, if random vector x is an n × 1 random vector with mean vector µ and

covariance matrix V , then the vector y = Ax+b has mean vectorAµ+b and covariance

matrix AV A′, the calculation of this being basically the same as in (48).
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Moreover, if x has a multivariate normal distribution, written x ∼ N(µ,V ), then,

as linear combinations of normally distributed random variables are likewise normally

distributed, we have

y = Ax+ b ∼ N(Aµ+ b,AV A′). (53)

6 Vector and Matrix Differentiation

For function

y = f(x) = f(x1, . . . , xn), (54)

the gradient is the column vector

∂f

∂x
=
[

∂f
∂x1

, . . . , ∂f
∂xn

]′
, (55)

and the (symmetric under mild conditions) Hessian matrix of second derivatives

H =
∂2f

∂x∂x′ =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x1∂x2

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 (56)

We are interest in derivatives of linear and quadratic forms. If

f(x) = a′x =
n∑

i=1

aixi, (57)

then
∂f(x)

∂x
= a. (58)

If

f(x) = x′Ax =
n∑

i=1

n∑
j=1

aijxixj, (59)

we observe that for general A

∂f(x)

∂xℓ

= 2aℓℓxℓ +
∑
i̸=ℓ

aiℓxi +
∑
j ̸=ℓ

aℓjxj (60)

=
n∑

i=1

aiℓxi +
n∑

j=1

aℓjxj (61)
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which can be identified as the ℓth element of the vector Ax+A′x = (A+A′)x; hence

∂f(x)

∂x
= (A+A′)x. (62)

The case of a symmetric A is of particular interest in our applications. Since a square

matrix A is symmetric exactly if A = A′, we have

∂f(x)

∂x
= 2Ax, (63)

in this case, and the Hessian is
∂2f

∂x∂x′ = 2A. (64)

For a function of the (bilinear) form

f(x,y) = y′Ax = x′A′y, (65)

we have from (58) that
∂f

∂x
= A′y, (66)

and
∂f

∂y
= Ax. (67)

For a function f(x) to have a local minimum or maximum at a point x0, its gradient

must vanish in this point. Moreover, such a point is

(i) a local maximum if the Hessian evaluated at this point is negative definite,

(ii) a local minimum if the Hessian evaluated at this point is positive definite.
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