Review of Matrix Algebra

1 Introduction

An matrix A of dimension m X n is a rectangular array of numbers with m rows and

n columns, with the element in the ith row and jth being denoted by a;;, ¢ = 1,...,m,
j=1,...,n, that is
aix Q2 - Qp
A— Qg1 G2 -+ d2n (1)
| Qm1 Gm2 " Qmp |

We may also write matrix A in (1) in terms of its typical elements a;; as A = [a;;i=1,.. myj=1,..n

or simply [a;;] if there is no ambiguity concerning its dimension.

1.1 Basic Definitions

(1) The transpose of the m x n matrix A, denoted by A’ (A prime), is the matrix
obtained by interchanging the rows and columns of A, that is, if A is as in (1),

then A’ is the n x m matrix with typical element a;; given by

A’ = [aj;] = [a;]. (2)
A matrix is equal to the transpose of its own transpose: (A") = A.

(2) A square matriz is a matrix where m = n.

3) A square matrix is symmetric if A = A’, that is, a;; = a;;. For example,
Y J J

is a symmetric 3 X 3 matrix.



(4)

A square matrix with all off-diagonal elements being zero is a diagonal matriz,
i.e., for such a matrix
(077 fori= J
ij = (4)
0 fori#j.

A special case of a diagonal matrix is the identity matriz of dimension n, I,,, where

all the diagonal elements are equal to one, i.e.,

(100 -~ 0]

010 - 0
I,=|0o01 - 0], (5)

(000 - 1]

A matrix with a single row is a row vector, and a matrix with a single column is

a column vector.

Elementary operations: Summation and Multiplication

Summation: If A and B are of the same order m xn, then mxn matrix C = A+B

is defined by

C = [¢;5] = lag + by]. (6)
Scalar multiplication: For a € R, a A = ofa;;] = [aay;].
Matrix multiplication: Consider two n—dimensional vectors a = a4, ..., a,] and
b=1[b1,...,b,]. The inner product of these vectors is given by

(a,b) = Z ab;. (7)

Now consider matrices A,,x, and B,,«, of dimensions m xn and n X p, respectively,
where it is crucial that the number of columns of A is equal to the number of rows

of B. Write these matrices in terms of their row and column vectors, respectively,



as

a;

as
A=| " |, B=|b b, ... b,,], (8)
whereai:[aﬂ,aig,...,am],i:1,...,m,andbj:[blj,bgj,...,bnj]’,j:1,...,p.

Then the product C,xp, = ApxnBrxp is defined by the m x p matrix

7777777777

For example, when

4 5
1 2 3
A= , B=13 21|, (10)
4 3 4
1 6
then C = AB is the 2 x 2 matrix
r 4 5
1 2 3 I1x4+2x34+3x1 1x5+2%x24+3x%x6
AB = 3 2| =
4 3 4 L6 4x44+3x34+4x1 4x54+3x24+4x%x6
13 27
29 50
If column vectors @ = [ay, ..., a,]" and b = [by,...,b,], then, if m = n, the inner
product

a'b = Zaibiv (11)
i=1

and the outer product of @ and b is the n x m matrix

aq a1b1 a1b2 cee albm
a asby  asby -+ agbh,
abl = | 7 | [bibo,. b= | T T (12)
L G, | L anbl aan T anbm |




The following rules are straightforward to verify:

(a) For conformable matrices A, B, and C, A(B+C)= AB+ AC and (AB)C =
A(BC), but in general AB # BA.

(b) (AB) = B'A’ For example, for the matrices in (10), we have

!/

4 5 ! 1 4
L 12 3 431 13 29 ,
B'A=1|3 2 = 2 3| = = (AB)".
4 3 4 5 2 6 - 27 50

(c) For any m x n matrix A, I,,A = AI, = A, where I, is the identity of dimension
n, as defined in (5).

The n nonzero vectors &1, &, . .., &, are orthogonal if x,x; = 0 whenever i # j, and
orthonormal if, in addition, iz, = 1for i = 1,...,n. Clearly a set of orthogonal vectors
can always be made orthonormal by scaling.

An n x n Matrix A is orthogonal if
AA=1, (13)

i.e., if its columns and rows (viewed as vectors) are orthonormal.

2 Linear Independence and Rank

A set of n—dimensional vectors xq, @s,...,x,, is linearly independent if
m
i=1
implies ¢; = ¢ = --- = ¢, = 0. Equivalently, the vectors are linearly independent if

none can be written as a linear combination of the other vectors. Otherwise they are
linearly dependent.
For example, vectors e; = [1,0]" and ey = [0, 1]" are linearly independent, since
1 0 (&1 0

c1 + co = = (15)
0 1 Co 0



implies ¢; = ¢o = 0. It follows by the same argument that the columns (or rows) of the
n—dimensional identity matrix are linearly independent, and they form the canonical
basis of R™. As an example for linearly dependent vectors, consider &; = [1,2] and
xs = [2,4]. Here 3 = 2x1, so the linear combination (14) is zero for ¢; = —2c¢s.
Clearly two vectors are in general linearly dependent if one vector is a multiple of the
other, since then &, = —(ca/c1) .

An important property of a matrix is the number of linearly independent columns
(which is equal to the number of linearly independent rows). This is the rank of an
m X n matrix A, denoted r(A). Clearly r(A) < min{m,n}. Further properties of the

rank:
Rl: r(AB) < min{r(A),r(B)}.

R2: r(A)=r(A")=r(A'A) =r(AA").

2.1 Nomnsingularity and Inverse

A square n X n matrix is nonsingular if it has full rank, i.e., its rank is n. Then (and
only then) there exists a unique n x n matrix B such that AB = BA = I, which is
the inverse of A and denoted as A™'. The solution of a system of n linear equations
with n unknowns Az = b can then be written as @ = A~ 'b. The linear system has a
unique solution if and only if A is nonsingular, and if and only if the system Ax = 0
has only the solution & = 0, i.e., for Az = 0 to have a nontrivial solution (x # 0), we
must have det(A) = 0.

For example, if

a b
A= : (16)
c d

then A is nonsingular if det(A) = |A| = ad — bec # 0 and, in this case,

L1 d —b

Useful properties:



N1: (A_l)_1 =A

N2: (A)™' = (A7')Y, that is, the inverse of the transpose is the transpose of the

inverse.
N3: Matrix A is nonsingular if and only if its determinant is different from zero.

N4: For A an m X n matrix and P and Q nonsingular m x m and n X n matrices,

respectively, we have

r(A)=r(PA)=r(AQ) =r(PAQ). (18)

N5: If matrices A and B are nonsingular and of the same order, (AB)™' = B~*A™,
which can easily be extended to more than two matrices, e.g., (ABC)™! =

C'(AB)"'=Cc'B'A™.

3 Trace

For an n x n matrix A, the trace, denoted as tr(A), is the sum of the elements on the

main diagonal, that is
trA:a11+a22+~--+a,m:Zaii. (19)
Clearly tr(aA) = atrA, and tr(A + B) = trA + trB. Calculations also show that
tr(AB) = tr(BA), (20)
which gives rise to the law of cyclical permutations, i.e., for conformable matrices,

tr(ABC) = tr(CAB) = tr(BCA). (21)

4 Eigenvalues and Eigenvectors

An eigenvalue of an n xn matrix A is a (real or complex) scalar A satisfying the equation

Ax = \x (22)



for some nonzero n x 1 vector «, which is called an eigenvector of A. An eigenvector
obviously is determined only up to a scalar multiple, since Equation (22) will also be
satisfied for ax, a # 0. Also, & # 0 is assumed since (22) is satisfied for any \ if x is
the zero vector.

Equation (22) can also be written as
(M- A)x =0, (23)

which means that we require

det(\ — A) = 0, (24)

which is a polynomial of degree n in A, called the characteristic equation of matrix
A. Thus, an n x n matrix A will have n (real or complex) eigenvalues, counting
multiplicities.
For example, for the 2 x 2 matrix (16), we have the characteristic equation
detOI—A4) = det |~ T S a0—d) —be
—c A—d
= M —(a+dA+ad—bc= )\ —trA\+det(A) =0,

with solutions

trA £+ \/trA2 —4det A
2 )
which shows that A\ + Ay = trA and A\ Ay = det A. This is generally true, i.e., the

)\1/2 — (25)

sum of the eigenvalues of any square matrix is equal to its trace, and the product of the

eigenvalues is equal to its determinant.



5 Symmetric Matrices

5.1 Quadratic Forms

Let A be a symmetric n X n matrix. The quadratic form associated with A is the

function

(UIERYESD 3) SETTIED SICTRD 9 DETTIRNNNC)
i=1

i=1 j=1 i=1 j#i

= i riag; + 2 Z inxjaij, x e R". (27)
i=1

i j<i
Clearly a quadratic form is always equal to zero if x is the zero vector.

Matrix A and the associated quadratic form are said to be
(a) positive definite if ' Az > 0 for any vector  # 0, and
(b) positive semidefinite if ' Ax > 0 for any vector x.

Negative definite and negative semidefinite matrices are analogously defined, and a

matrix is indefinite if it is neither positive nor negative semidefinite.

(i) If A is a positive definite matrix, then it is nonsingular, and the inverse of A is

also positive definite.

(ii) if A is m x n, then A'A is positive semidefinite. If A has rank n, then A'A is

positive definite.
(iii) Symmetric matrix is positive definite if and only if all eigenvalues are positive.

(iv) If A is positive definite, then —A is negative definite.

The 2 x 2 matrix

a a
A 11 Q12 (28)
G12 Qa2
is positive definite if and only if
2
ail > 0, 11022 — A7y > 0. (29)

8



To see this, note that

a11 a2 €
/

Q12 Qa2 T2

= x%all + 2x129019 + x§a22

a1 a? a’?
2 20719 2 2019
= an (% + 2110 — + !EQT) + x3a99 — TH5—
ay ay an
a2 ana a?
12 911022 — A7y
= apn (xl +:1:2—) + xy—————=.
ail ai1

Example 1 (Covariance matrices) Recall that the variance of a random variable X is

defined by

o

var(X) = B{(X — )’} = / (2 — jx)2fx (o), (30)

— 00

where p = [xfx(x)dx is the mean (or expectation) of X and fx is the probability
density function (pdf) of X. Now suppose we have a pair of random variables X and

Xy, then the covariance between X, and X, a measure of (linear) dependence, is defined

by

cov(X1, X2) = E[(Xy — 1) (X2 — po)] = E(X1X2) — ppia. (31)
Now consider random vector x = [X1,Xs,..., X,]'. The expectation Ex is just the
column vector [y, ..., pn)', where p; = E(X;), i = 1,....n. The covariance matriz (or

variance—covariance matriz) of the random vector x is

V =cov(x) = E|(x— FEzx)(x — Fz)'] (32)
X1 =
Xo — o
= F : Xl—,ul XQ—[LQ Xn_,un > (33)
\ L Xn — Hn /
Exi—m)?  EX-p)(Xe—p2) - BXi—p1)(Xn—pa)
| B (X)) BXo—pe)® e BAXa—pi2) (Xn—pin) (34)
| B ) (1) ) (Xa2) -~ B —pa)?
var(X1)  cou(Xq1,Xs) -+ cov(Xy, X,)
cov(X1,Xo)  war(Xy) -+ cov(Xay, Xy)
_ _ | | (35)
| cov( Xy, Xy)  cou( Xy, Xp) co war(Xy)

9



Recall that a linear combination of random variables, such as

Y = CL/CB = Z CLZ'XZ‘ (36)

i=1
has expectation

EY) = E{i aiXZ} = i a;E(X;) = a'Fx. (37)

i=1

The variance of Y defined by (36) is

3

0<wvar(Y) = E{(Y - EY)? (Z a;(X ) (38)

= {ZZ@M; i) (X5 — Mj)} (39)

i=1 j5=1

= 3N a0 BX — w)(X; — py) (40)

i=1 j=1
= Za var(X, +ZZGCLJCOUX“X) (41)
i=1 1 j#i
= a'Va. (42)

This shows that the variance of a linear combination of random variables can be written
as a quadratic form in the covariance matriz of these variables, and since a variance is
nonnegative (positive if the variable is not a constant), we see that covariance matrices
are always positive semidefinite, and they are positive definite unless there exists a # 0
such that the linear combination a’x is a constant.

For two random variables X and Y, the covariance matrix is

v var(X)  cou(X,Y) _. 0% oxy | (43)
cov(X,Y)  war(Y) oxy 0%

From (29) and the positive (semi)definiteness of covariance matrices, it follows that

oxoy =/0%0% > |oxyl, (44)

which among other things implies that the correlation coefficient

OXxy

corr(X,Y) = pxy = e[-1,1]. (45)

0x0y

10



lp| = 1 if and only if the variables are linearly dependent, i.e., each can be written as a

linear function of the other.

5.2 Choleski Decomposition of Positive Definite Matrices

Suppose random variable X has mean u and variance o2. Then by standardizing X we

get a variable with mean zero and unit variance,

(46)

The same can be done for a random vector  with mean vector p and covariance matrix
V.

This is based on the following result: (Choleski Decomposition) If A is an n X n
positive definite symmetric matriz, there is a nonsingular lower triangular matriz C
with positive diagonal elements such that CC'.

Note that C may be viewed as the “matrix root” of A. As a simple example, consider

the matrix

4 2 2 0 2 1
= . (47)
2 4 1 V3 0 V3

Now let V = CC’, so that V™' = C""'C~'. Consider the random vector z = C~*(x —

p), which has zero mean vector, so the covariance matrix of z is

cov(z) = E(z2') =E{C7'(z — p)(x — p)C"™"} (48)
= CT'E{(z — p)(z —p)}C"" (49)
= c'vc! (50)
= c'cc'c!? (51)
= I, (52)

the identity matrix, i.e., the variables are uncorrelated with unit variance.
In general, if random vector & is an n X 1 random vector with mean vector g and
covariance matrix V', then the vector y = Ax+b has mean vector Au+b and covariance

matrix AV A’, the calculation of this being basically the same as in (48).

11



Moreover, if  has a multivariate normal distribution, written & ~ N(u, V'), then,

as linear combinations of normally distributed random variables are likewise normally

distributed, we have

y=Azx+b~NAu+b AVA').

6 Vector and Matrix Differentiation

For function
y:f<m):f($1,...,l’n),
the gradient is the column vector

of _T o o]

ox Oz’ " 7 Oxn )

and the (symmetric under mild conditions) Hessian matrix of second derivatives

oy oy .. 9
O3 Ox10x2 Ox10zn
. TR T
H — f o 01022 23 O0x20Tn
Ooxox’
0%f o’y ... 9%
L O0z,0x1 OxnOxo ox2

We are interest in derivatives of linear and quadratic forms. If

n
f(x) =dz = Zaixi,
i1

then
of(x) _
5~ &
It -
flx)=a'Ax = Z Z Qi T,
i=1 j=1

we observe that for general A

of (x
M 2&@51‘( + Z A0 ; + Z Qpj T

ox
£ il Py,
n n
= E Qi T; —+ E CngIj
i=1 j=1

12

(53)

(57)

(58)

(59)

(60)

(61)



which can be identified as the ¢th element of the vector Az + A’z = (A + A')x; hence

of (z)
ox

= (A+ Az (62)

The case of a symmetric A is of particular interest in our applications. Since a square

matrix A is symmetric exactly if A = A’, we have

0f(®) _ 54

5 x, (63)
in this case, and the Hessian is
0 f A
dzox’ 2 (64)
For a function of the (bilinear) form
flx,y) =y Az = 2'A'y, (65)
we have from (58) that
of
a_a‘; == A,y7 (66)
and
% = Ax. (67)

For a function f(x) to have a local minimum or maximum at a point @, its gradient

must vanish in this point. Moreover, such a point is
(i) a local maximum if the Hessian evaluated at this point is negative definite,

(ii) a local minimum if the Hessian evaluated at this point is positive definite.

13



