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The Multiple Regression Model

• We have seen how to use the simple linear model to analyze the variations
of a dependent variable y in response to changes of an independent
variable x.

• A major drawback of the simple linear model is that it is difficult to
identify ceteris paribus effects of x on y, given that the assumption of
uncorrelatedness between x and the other factors affecting y is often
unrealistic.

• The multiple regression model is much better suited for such analysis,
since it allows to explicitly control for other factors that simultaneously
affect the dependent variable y.
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The Multiple Regression Model

• Consider the wage equation example, which may be expanded to include
labor market experience (exper),

wage = β0 + β1edu + β2exper + u, (1)

where edu is years of education.

• Assume we are still primarily interested in the effect of edu on wage,
holding fixed all the other factors affecting wage.

• Just as in the simple linear model, we will need several assumptions
about the relationship (or lack thereof) between u and the variables edu
and exper.

• However, and in contrast to the simple regression framework, we do
know that we will be able to measure the impact of education on wage
while holding experience fixed.

2



The Multiple Regression Model

• The multiple regression model with k explanatory variables x1, x2, . . . , xk

is
y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u. (2)

• The terminology is rather similar to the simple linear model:

• y is the dependent or explained or response variable, or the
regressand, and

• x1, x2, . . . , xk are the independent or explanatory or control variables,
or the regressors.

• u is the error term or disturbance, capturing factors other than
x1, . . . , xk that affect y.

• As before, β0 is the intercept parameter, and the β1, β2, . . . , βk will be
referred to as the slope parameters.
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The Ordinary Least Squares (OLS) Estimator

• Assume that we observe a sample of size n,

{(xi1, xi2, . . . , xik, yi) : i = 1, . . . , n}, (3)

from the population generated by our multiple linear regression model.

• That is, we have n observations for each of our k explanatory variables
and the explained variable.

• xij denotes the ith observation of variable j, i.e.,

– i is the observation number, and
– j is the variable number.

• We can write

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ui, i = 1, . . . , n. (4)
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• Our estimators of β0, β1, . . . , βk will be denoted by β̂0, β̂1, . . . , β̂k, and
we may define the fitted value for observation i as

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik, (5)

and the regression residuals

ûi = yi − ŷi = yi − β̂0 − β̂1xi1 − · · · − β̂kxik, i = 1, . . . , n. (6)

• As for the simple linear model, where k = 1, the OLS estimator chooses
the estimates so that β̂0 the sum of squared regression residuals is
minimized, i.e., we want to minimize

S(β̂0, β̂1, . . . , β̂k) =
n∑

i=1

û2
i

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂kxik)2.
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• The first–order conditions are

∂S

∂β̂0

= −2
n∑

i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂kxik) = 0

∂S

∂β̂1

= −2
n∑

i=1

xi1(yi − β̂0 − β̂1xi1 − · · · − β̂kxik) = 0

∂S

∂β̂2

= −2
n∑

i=1

xi2(yi − β̂0 − β̂1xi1 − · · · − β̂kxik) = 0 (7)

...

∂S

∂β̂k

= −2
n∑

i=1

xik(yi − β̂0 − β̂1xi1 − · · · − β̂kxik) = 0.

• The first–order conditions (7) imply that

∑

i

ûi = 0,
∑

i

xi1ûi = 0, . . . ,
∑

i

xikûi = 0, (8)

which resembles our result from the simple regression model.
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• Several aspects of the analysis can be considerably simplified by writing
the multiple regression model in matrix form.

• Let us first consider observation i.

• By defining the vectors (both of dimension k + 1)

β =




β0

β1
...

βk


 , and xi =

[
1 xi1 · · · xik

]
, (9)

we can write
yi = xiβ + ui, i = 1, . . . , n. (10)

• Next, we define the data matrix of dimension n× (k + 1),

X =




x1

x2
...

xn


 =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
... ... ... ...
1 xn1 xn2 · · · xnk


 . (11)
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• The ith row of this matrix contains the explanatory variables (including
the constant) for observation i.

• The jth column of this matrix contains the i observations of the jth
explanatory variable, x1j, x2j, . . . , xnj.

• Then we can write




y1

y2
...

yn




︸ ︷︷ ︸
=y

=




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
... ... ... ...
1 xn1 xn2 · · · xnk




︸ ︷︷ ︸
=X




β0

β1
...

βk




︸ ︷︷ ︸
=β

+




u1

u2
...

un




︸ ︷︷ ︸
=u

, (12)

i.e.,

y = Xβ + u. (13)
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• Likewise, we can define

ŷ =




ŷ1

ŷ2
...

ŷn


 , û =




û1

û2
...

ûn


 , β̂ =




β̂0

β̂2
...

β̂k


 . (14)

• Inspection of the conditions (8),

∑

i

ûi = 0,
∑

i

xi1ûi = 0, . . . ,
∑

i

xikûi = 0,

shows that these may be written




1 1 1 · · · 1
x11 x21 x31 · · · xn1
... ... ... ...

x1k x2k x3k · · · xnk







û1

û2
...

ûn


 =




0
0
...
0


 , (15)

that is,
X ′û = 0, (16)
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where the the prime means “transposed”.

• We now use condition (16),

X ′û = 0, (17)

to find the ordinary least squares estimator.

• We have

y = Xβ̂ + û. (18)

• Now multiply both sides of the equation by X ′ as given in (15),

X ′y = X ′Xβ̂ + X ′û︸︷︷︸
=0

, (19)

so (the normal equations)

X ′y = X ′Xβ̂, (20)
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or

β̂ = (X ′X)−1X ′y, (21)

provided (X ′X)−1 exists, as we shall assume.

• Note that X ′X is the second moment matrix of the independent
variables, and the normal equations (20), written in extensive form, are




n
∑

i xi1

∑
i xi2 · · · ∑

i xik∑
i xi1

∑
i x

2
i1

∑
i xi1xi2 · · · ∑

i xi1xik∑
i xi2

∑
i xi1xi2

∑
i x

2
i2 · · · ∑

i xi2xik
... ... ... . . . ...∑
i xik

∑
i xikxi1

∑
i xikxi2 · · · ∑

i x
2
ik




︸ ︷︷ ︸
=X′X




β̂0

β̂1

β̂2
...

β̂k




=




∑
i yi∑

i xi1yi∑
i xi2yi
...∑

i xikyi




︸ ︷︷ ︸
=X′y

.
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• The condition that (X ′X)−1 exists requires that the explanatory
variables are linearly independent, and is a generalization of our earlier
condition s2

x > 0 in the simple linear model (since if there is no variation
in one of the explanatory variables, then there is linear dependence
between this “variable” and the constant in the regression equation).

• An obvious condition for X ′X to be nonsingular is that n ≥ k + 1
(usually n should be considerably larger than k).

• Also note from the first–order condition for β̂0 that the OLS estimator
satisfies

β̂0 = y −
k∑

j=1

β̂jxj, (22)

where

xj =
1
n

n∑

i=1

xij. (23)

• This implies, for example, that the point (x1, x2, . . . , xk, y) is always on
the regression line.
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Interpretation of the OLS Regression Equation

• The OLS regression line is

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂kxk. (24)

• Just as in the simple linear model, the intercept parameter β̂0 may or
may not have an interesting interpretation, depending on whether setting
all the explanatory variables equal to zero is a relevant scenario.

• The estimates β̂j, j = 1, . . . , k, have a partial effect, or ceteris paribus,
interpretation.

• From (24), with ∆ denoting “change”,

∆ŷ = β̂1∆x1 + β̂2∆x2 + · · ·+ β̂k∆xk, (25)

we can obtain the (predicted) change in y in response to changes in xj,
j = 1, . . . , k.
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• When all independent variables except x1 are held fixed, so that ∆x2 =
∆x3 = · · · = ∆xk = 0, then

∆ŷ = β̂1∆x1. (26)

In this sense, when using multiple regression, we can control for the
variables x2, . . . , xk when measuring the effect of x1 on y.

• Clearly the other coefficients of the equation have an analogous
interpretation.
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More flexible functional forms

• For example, with multiple regression, we may model y as

y = β0 + β1x1 + β2x
2
1 + β3x2 + u. (27)

• Clearly the coefficients β1 and β2, separately, do not have the
interpretation of slope coefficients.

• Rather, to find the effect of x1 we have to calculate

∂y

∂x1
= β1 + 2β2x1. (28)
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Coefficient of Determination (R2)

• We have the same relation as in the simple linear model, i.e.,

n∑

i=1

(yi − ȳ)2

︸ ︷︷ ︸
=SST

=
n∑

i=1

û2
i

︸ ︷︷ ︸
=SSR

+
n∑

i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
=SSE

where

• SST means total sum of squares, measuring the total sample variation
in the yis,

• SSE means explained sum of squares, i.e., the part of variation in the
yis that is explained by the fitted regression line,

• SSR means residual sum of squares, i.e., the part of the variation that
is not explained by the fitted line.
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• The coefficient of determination, R2,

R2 =
SSE

SST
= 1− SSR

SST
, (29)

can be interpreted as the fraction of the sample variation in y that is
explained by x (via the fitted linear regression line).

• Clearly
0 ≤ R2 ≤ 1.

• The fraction–of–variance interpretation will hold only if there is a constant
in the regression, since otherwise

∑
i ûi 6= 0 generally.

• R2 cannot be used for selecting the regressors to be included into the
model since it never decreases (and usually increases) with the inclusion
of an additional variable.

• For example, if we have n linearly independent regressors (including the
constant), then R2 = 1.
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• Economically, the relevant question is whether an explanatory variable
has an economically and statistically significant partial effect on y.

• Thus, R2 will not play an important role in building econometric models
if such questions are of primary interest.

• Measures of fit can be more important when forecasting is the main goal
of modeling, however (e.g., the adjusted R2).
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Statistical Properties of OLS: Assumptions
(Gauß–Markov Assumptions)

• The assumptions required to derive the properties of the ordinary least
squares estimator are straightforward extensions of those of the simple
linear model.

• In particular, the following assumptions will be made:

1) The linear model is correctly specified, i.e., y is related to the
independent variables and u as y = β0 + β1x + · · · + βkxk + u.
(Linearity in Parameters)

2) We observe a random sample of size n, {(xi1, xi2, . . . , xik, yi) : i =
1, . . . , n}, generated from the linear model.

3) The independent variables are not linearly dependent, i.e.,
det(X ′X) > 0, so that (X ′X)−1 exists. (No Perfect Collinearity)

4) E(u|x1, x2, . . . , xk) = 0. (Zero Conditional mean)
5) E(u2|x) = Var(y|x1, x2, . . . , xk) = σ2, i.e., the variance of u (and

hence y) does not depend on x. (Homoskedasticity)
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• Note that the assumption of random sampling implies

E(uiuj) = Cov(ui, uj) = 0, i 6= j. (30)
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• We can also combine the assumption of random sampling with that
of homoskedasticity to obtain a simple and useful expression for the
covariance matrix of the vector u. Namely. as all the variances are equal
to σ2, and all covariances are zero, we have

Cov(u) = E(uu′) = E







u1

u2
...

un




[
u1 u2 · · · un

]

 (31)

=




E(u2
1) E(u1u2) · · · E(u1un)

E(u1, u2) E(u2
2) · · · E(u2un)

... ... · · · ...
E(u1un) E(u2un) · · · E(u2

n)


 (32)

=




σ2 0 · · · 0
0 σ2 · · · 0
... ... . . . ...
0 0 · · · σ2


 = σ2In, (33)

where In is the identity matrix of dimension n, i.e., an n×n matrix with
ones on the diagonal and zeros elsewhere.
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Statistical Properties: Unbiasedness

• We have seen that the OLS estimator is unbiased in the simple linear
model.

• The same can be shown in the multiple regression model, as follows:

• We write our expression for β̂ and, assuming our model is correctly
specified (Assumption 1), substitute for y,

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ + u︸ ︷︷ ︸
=y

)

= (X ′X)−1X ′X︸ ︷︷ ︸
=Ik (identity matrix)

β + (X ′X)−1X ′u

= β + (X ′X)−1X ′u. (34)
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Taking expectations, using Assumption 4,

E(β̂|X) = β + E[(X ′X)−1X ′u|X]

= β + (X ′X)−1X ′ E(u|X)︸ ︷︷ ︸
=0

= β.

• Thus, the OLS estimator is unbiased.

• Note that the assumption of homoskedasticity of the regression errors is
not required to derive the unbiasedness of the OLS estimator.

• It is also apparent that β̂ is a linear estimator.
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The Omitted Variable Bias

• Suppose we omit a variable that actually affect y in the population,
which is referred to as the probelm of excluding a relevant variable.

• Consider the simplest possible case, where the true model is

y = β0 + β1x1 + β2x2 + u, (35)

whereas we estimate the equation

y = β̃0 + β̃1x1 + ũ. (36)

Our OLS estimator of the misspecified model is

̂̃
β1 =

∑n
i=1(xi1 − x1)yi

ns2
x1

. (37)
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• Substituting (35) into (37) gives

̂̃
β1 =

∑n
i=1(xi1 − x1)(β0 + β1xi1 + β2xi2 + ui)

ns2
x1

=
∑n

i=1(xi1 − x1)β0 + β1

∑n
i=1(xi1 − x1)xi1

ns2
x1

+
β2

∑n
i=1(xi1 − x1)xi2 +

∑n
i=1(xi1 − x1)ui

ns2
x1

= 0 + β1 + β2
sx1,x2

s2
x1

+
∑

i(xi1 − x1)ui

ns2
x1

, (38)

where

sx1,x2 =
1
n

n∑

i=1

(xi1 − x1)xi2 =
1
n

n∑

i=1

(xi1 − x1)(xi2 − x2)

is the sample covariance between x1 and x2.
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• Taking expectations in (38) gives

E(̂̃β1|X) = β1 + β2
sx1,x2

s2
x1

6= β1, (39)

provided that β2 6= 0 and sx1,x2 6= 0. Note that

sx1,x2

s2
x1

(40)

is the OLS slope coefficient δ̂1 of the regression

x̂i2 = δ̂0 + δ̂1xi1, (41)

i.e., the slope coefficient of a regression of x2 on x1.
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• It follows that the OLS estimator of the misspecified equation (37) is
unbiased only if either

– variable x2 does not affect y, i.e., β2 = 0, or
– x1 and x2 are uncorrelated in the sample, i.e., sx1,x2 = 0.

• The bias is due to the fact that x1 affects y directly via β1 but also via

x1

sx1,x2−→ x2
β2−→ y.

• Thus to obtain an unbiased estimator of β1 the impact of x2 must be
controlled for.

• The bias in this case is

E(̂̃β1|X)− β1 = δ̂1β2, (42)

and the following table provides information about the sign of the bias.
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Table 1: Bias of ̂̃
β1

sx1,x2
> 0 sx1,x2

< 0

β2 > 0 positive bias negative bias

β2 < 0 negative bias positive bias

• In more general settings, it is much more difficult to make precise
statements about the sign and the magnitude of the bias, since the
entire correlation structure of the variables in X determine the bias.

• For example, if in a true model with three variables,

y = β0 + β1x1 + β2x2 + β3x3 + u, (43)

we omit x3, and x1 is correlated with x3, whereas x2 is not correlated
with x3, then the estimator of β2 based on the wrong model (with x3

left out) will still be biased unless x1 and x2 are likewise uncorrelated.
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• To illustrate, assume that all variables have zero mean, so a model with
zero intercept is appropriate, i.e.,

y = β1x1 + β2x2 + β3x3 + u. (44)

• Write the true model as

y = X1:2β1:2 + x3β3 + u, (45)

where

X1:2 =




x11 x12

x21 x22
... ...

xn1 xn2


 , β1:2 =

[
β1

β2

]
, x3 =




x13

x23
...

xn3


 . (46)

• The estimator of β1:2 which results from omitting x3 is

̂̃
β1:2 = (X ′

1:2X1:2)−1X ′
1:2y,
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and, upon substituting (45), its expectation is

E(̂̃β1:2) = E[(X ′
1:2X1:2)−1X ′

1:2y]

= E[(X ′
1:2X1:2)−1X ′

1:2(X1:2β1:2 + x3β3 + u)]

= β1:2 + (X ′
1:2X1:2)−1X ′

1:2x3β3.

• The bias term E(̂̃β1:2)− β1:2 is

(X ′
1:2X1:2)−1X ′

1:2x3β3 =
[ ∑

i x
2
i1

∑
i xi1xi2∑

i xi1xi2

∑
i x

2
i2

]−1 [ ∑
i xi1xi3∑
i xi2xi3

]
β3

=

[ ∑
i x

2
i2 −∑

i xi1xi2

−∑
i xi1xi2

∑
i x

2
i1

]

∑
i x

2
i1

∑
i x

2
i2 − (

∑
i xi1xi2)2

[ ∑
i xi1xi3∑
i xi2xi3

]
β3.
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• Hence, the expected value of x2’s slope coefficient from the incomplete

model, ̂̃
β2, is

E(̂̃β2) = β2 +
∑

i x
2
i1

∑
i xi2xi3 −

∑
i xi1xi2

∑
i xi1xi3∑

i x
2
i1

∑
i x

2
i2 − (

∑
i xi1xi2)2

β3, (47)

where, due to the zero mean assumption, terms of the form

∑

i

xi1xi2 (48)

can be interpreted as the covariance between x1 and x2 in the sample.

• Therefore, even if x2 is uncorrelated with x3,
̂̃
β2 will be biased as long as

either x1 is also uncorrelated with x3 or x2 is also uncorrelated with x1.

• However, the reasoning leading to Table 1 is often followed as a rough
guide for obtaining the probable bias in estimators in more complex
settings.
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Including Irrelevant Variables

• The opposite of the problem considered above is the inclusion of irrelevant
variables in the model.

• Actually, this means considering variables with a population slope
coefficient of zero.

• As OLS is unbiased, the expected value of the slope estimators of these
variables will be zero, and the unbiasedness of OLS will not be affected.

• However, including irrelevant variables may increase the variance of the
OLS estimators, as we shall see below.

32



The Covariance Matrix of the OLS Estimator

• Among other things, the covariance matrix is required for testing
statistical hypotheses about the parameter vector β.

• The covariance matrix of β̂ is

Cov(β̂|X) =




Var(β̂0|X) Cov(β̂0,β̂1|X) ··· Cov(β̂0,β̂k|X)

Cov(β̂0,β̂1|X) Var(β̂1|X) ··· Cov(β̂1,β̂k|X)
... ... . . . ...

Cov(β̂0,β̂k|X) Cov(β̂k,β̂1|X) ··· Var(β̂k|X)




= E[(β̂ − E(β̂))(β̂ − E(β̂))′|X]
(34)
= E

[
(X ′X)−1X ′uu′X(X ′X)−1|X]

= (X ′X)−1X ′E(uu′|X)X(X ′X)−1

(33)
= (X ′X)−1X ′(σ2IT )X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1,

where (AB)′ = B′A′ was used.
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• To illustrate, consider the familiar simple regression model, where we
have

X =




1 x11

1 x21
... ...
1 xn1


 , X ′X =

[
n

∑
i xi1∑

i xi1

∑
i x

2
i1

]
, X ′y =

[ ∑
i yi∑

i xi1yi

]
.

Thus,

Cov([β̂0, β̂1]′) = σ2

[ ∑
i x

2
i1 −∑

i xi1

−∑
i xi1 n

]

n
∑

i x
2
i1 − (

∑
i xi1)

2

=
σ2

ns2
x1

[
x2

1 −x1

−x1 1

]
.

• The variance of the OLS estimator is important for statistical inference,
and it also helps figuring out several further properties of OLS, as we
shall now see.
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Components of OLS Variances

• Consider a simplified setting where all variables have zero mean, so that
there is no intercept in the model

y = β1x1 + β2x2 + u. (49)

We can calculate the covariance matrix of the OLS estimator β̂ = [β̂1, β̂2]′

by using the formula

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

σ2(X ′X)−1 = σ2

[ ∑
i x

2
i1

∑
i xi1xi2∑

i xi1xi2

∑
i x

2
i2

]−1

=
σ2

∑
i x

2
i1

∑
i x

2
i2 − (

∑
i xi1xi2)

2

[ ∑
i x

2
i2 −∑

i xi1xi2

−∑
i xi1xi2

∑
i x

2
i1

]
,

35



so

Var(β̂1) =
σ2

∑
i x

2
i2∑

i x
2
i1

∑
i x

2
i2 − (

∑
i xi1xi2)

2

=
σ2

∑
i x

2
i1

(
1− (∑

i xi1xi2)
2

∑
i x2

i1

∑
i x2

i2

)

=
σ2

∑
i x

2
i1

(
1− r2

x1,x2

)

=
σ2

ns2
x1

(
1− r2

x1,x2

),

where r2
x1,x2

is the squared correlation coefficient between x1 and x2,
and therefore the coefficient of determination of a regression of x1 on x2

(or vice versa).
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• This result holds generally, i.e., for regressions with an arbitrary number
of regressors and intercept:

• Under the Gauß–Markov Assumptions,

Var(β̂j) =
σ2

ns2
xj

(1−R2
j)

, (50)

where σ2 is the variance of the error term,

s2
xj

=
1
n

n∑

i=1

(xij − xj)2, (51)

and R2
j is the coefficient of determination from a regression of xj on all

the other variables in X (and a constant, but not y).
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• So the components of the sampling variance of β̂j are as follows.

1) The sample size, n.

2) The error term variance, σ2. This can only be reduced by adding more
independent variables to the regression, that is, taking some factors out
of the error term. Clearly this requires that additional factors can be
identified that substantially affect y.

3) The variation in xj, s2
xj

. As the slope coefficient βj measures how y
changes with xj, we may expect that learning about βj is easier when
xj changes a lot.

4) The correlation between xj and the other independent variables in the
sample.
Perfect correlation, i.e., linear dependence, where R2

j = 1, is the case of
perfect collinearity, whereas high (but not perfect) correlation is referred
to as multicollinearity.
When the regressors are highly correlated, it is statistically difficult to
disentangle the impact of x1 from that of x2. As a consequence, the
precision of individual estimates is reduced.
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• Factor (1−R2
j)
−1 is also referred to as variance inflation factor (VIF).

• If correlation is very high, this may indicate that the questions we want
the data to answer are just a bit too complex.

• An example in the textbook refers to the situation where student
performance is regressed on various school expenditure categories (in
the US) like teacher salaries, instructional materials, sports, etc.

• All of these tend to be highly correlated, and finding out their partial
impacts may just be too ambitious.

• It may be more reasonable to just consider the variable “expenditure per
student” as a summary of all of them.
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“Partialling Out” Interpretation of Multiple Regression

• This helps illustrating several of the properties of OLS discussed so far.

• We consider again the model with k = 2 with all variables having zero
mean, i.e.,

y = β1x1 + β2x2 + u.

• The OLS estimator is

[
β̂1

β̂2

]
=

[ ∑
i x

2
i1

∑
i xi1xi2∑

i xi1xi2

∑
i x

2
i2

]−1 [ ∑
i xi1yi∑
i xi2yi

]
,

which gives, with s2
1 =

∑
i x

2
1i, s2

2 =
∑

i x
2
2i, s12 =

∑
i xi1xi2,

β̂1 =
∑

i x
2
i2

∑
i xi1yi −

∑
i xi1xi2

∑
i xi2yi∑

i x
2
i1

∑
i x

2
i1 − (

∑
i xi1xi2)2

=

∑
i yi

(
xi1 − s12

s2
2
xi2

)

∑
i xi1

(
xi1 − s12

s2
2
xi2

) = · · ·
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· · · = β̂1 =
∑

i yiv̂i∑
i v̂

2
i

, (52)

where the v̂i are the residuals from the simple regression of x1 on x2,

xi1 = δ̂1xi2 + v̂i, δ̂1 =
s12

s2
2

,

∑

i

v̂2
i =

∑

i

(
xi1 − s12

s2
2

xi2

)2

=
∑

i

xi1

(
xi1 − s12

s2
2

xi2

)
=

∑

i

xi1v̂i,

since ∑

i

x2iv̂i = 0

by the OLS first–order condition.

• Equation (52) states that, in order to calculate β̂1, we may first regress
x1 on x2 with residuals v̂, and then calculate the regression of y on v̂ to
obtain β̂1.

• Thus, β̂1 measures the relationship between y and x1 after the effects of
x2 have been partialled out.
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• What is left in the residuals v̂ (and measured by β̂1) is the variation in y
that matches up uniquely with variation in x1.

• Clearly the same reasoning applies to β̂2.

• If more than two variables are in the model, the same interpretation is
true for each of the slope coefficients β̂j, but the residuals in (52) are
then obtained from a regression of all independent variables under study
except variable xj (when β̂j is computed).

• This can be related to the multicollinearity issue: If the variables are
highly correlated, there is not enough independent variation in each
variable for OLS to provide precise estimates.
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Gauß–Markov Theorem
• The Gauß–Markov Theorem can also be derived for the multiple

regression model.

• It states that, provided the Gauß–Markov Assumptions hold, the OLS
estimators have the smallest variance in the class of linear unbiased
estimators.

• That is, for any other linear unbiased estimator, β̃j,

Var(β̃j) ≥ Var(β̂j), j = 0, . . . , k. (53)

• To see this, consider any other linear unbiased estimator of β, say

β̃ = Ay = A(Xβ + u). (54)

• For (54) to be unbiased, we need to have AX = I (the identity of
dimension k + 1), and then, proceeding in the same way as for the OLS
estimator,

Cov(β̃) = σ2AA′. (55)
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• Now define

B = A− (X ′X)−1X ′,

so that (55) may be written

Cov(β̃) = σ2(B + (X ′X)−1X ′)(B′ + X(X ′X)−1)

= σ2
(
BB′ + (X ′X)−1 + BX(X ′X)−1 + (X ′X)−1X ′B′) .

• Since, by the definition of B,

BX = AX︸︷︷︸
=I

− (X ′X)−1X ′X︸ ︷︷ ︸
=I

= 0,

we get

Cov(β̃) = σ2
(
BB′ + (X ′X)−1

)
.

• The variances are on the diagonal of the covariance matrix.
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• Thus, with the (k + 1)–dimensional column vector ej defined as1

ej = [ 0 . . . 0︸ ︷︷ ︸
j times

1 0 . . . 0︸ ︷︷ ︸
k−j times

]′, j = 0, . . . , k,

Var(β̃j) = σ2e′j(X
′X)−1ej + σ2e′jBB′ej

= Var(β̂j) + σ2e′jBB′ej. (56)

• The second term on the right hand side of (56) is nonnegative, since,
with vector aj := B′ej,

e′jBB′ej = (Bej)′(B′ej) = a′jaj =
k+1∑

i=1

a2
ij ≥ 0.

1If j = 0, corresponding to β0, then the 1 is in the first position of e0.
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• The same reasoning can be applied to any linear combination of the βjs.

• I.e., if we are interested in estimating a linear combination of the
parameters such as β1 +β2, or β1 +2β2− 5β3, the linear combination of
the OLS estimators provides best linear unbiased estimator of this linear
combination.

• Summarizing, the Gauß–Markov Theorem implies that, under the Gauß–
Markov Assumptions, we need not look for for alternative unbiased
estimators of the simple form β̃ = Ay, as any estimator of this form will
be inferior to OLS.

• The result is also useful as it helps to construct efficient estimators
in cases where one of the Gauß–Markov Assumptions turns out to be
violated.
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Estimation of the Error Variance

• For conducting statistical inference about the elements of β, we need to
estimate their variances, and this requires an estimator of the error term
variance σ2.

• An unbiased estimator of σ2 is given by

σ̂2 =
1

n− k − 1

n∑

i=1

û2
i =

û′û
n− k − 1

, (57)

which has been shown for k = 1 (simple regression) in the exercises.

• Note that, without a constant term, we have to divide by n− k.
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