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Maximum Likelihood (ML) Estimation

• To introduce the maximum likelihood approach to estimating unknown
parameters, we consider a rather simple example.1

• Suppose that an urn contains a number of black and a number of white
balls.

• It is known that the ratio of the numbers is 3/1.

• However, it is not known whether the black or the white balls are more
numerous.

• That is, the probability p of drawing a black ball is either 1/4 or 3/4.

1This is taken from Mood/Graybill/Boes: Introduction to the Theory of Statistics, McGraw-Hill, third
edition, 1974.
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• Define the Bernoulli random variable X as

X =

{
1 if the ball is black

0 if the ball is white
(1)

• Since p is the probability of drawing a black ball, the probability mass
function of X is

f(x; p) = Pr(X = x) =

{
p if x = 1

1− p if x = 0
(2)

= px(1− p)1−x, x ∈ {0, 1}. (3)

• Now suppose we draw a sample of three balls with replacement2 from
the urn.

2This means that the probability does not change, as for each draw there is the same number of white
and black balls in the urn.
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• There are 8 possible outcomes of such an experiment:3

Table 1: Drawing balls from an urn
outcome probability of outcome if...

p = 1
4 p = 3

4

(b, b, b) 0.0156 0.4219

(b, b, w) 0.0469 0.1406

(b, w, b) 0.0469 0.1406

(w, b, b) 0.0469 0.1406

(b, w,w) 0.1406 0.0469

(w, b, w) 0.1406 0.0469

(w,w, b) 0.1406 0.0469

(w,w,w) 0.4219 0.0156

• Now we use the outcome of the experiment to estimate the unknown
parameter p (which is either 1/4 or 3/4 in our case).

3In the table, (w, b, w) describes the outcome that the first ball drawn is white, the second is black and
the third is white. The probability of such an event is p × (1 − p)2.
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• Suppose we observe (w, b, b).

• Then, applying maximum likelihood estimation, we would estimate p to
be 3/4, because such a sample is more likely to arise from a population
with p = 3

4 than from one with p = 1
4.

• Following this logic, we can define the maximum likelihood estimator
(MLE) for this example via

p̂ML =

{
1
4 if the number of black balls drawn is 0 or 1
3
4 if the number of black balls drawn is 2 or 3

(4)
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Maximum Likelihood (ML) Estimation

• Let us generalize the procedure considered so far:

• Suppose that a random sample of size n is drawn from the Bernoulli
distribution with probability mass function

f(x; p) = px(1− p)1−x, x ∈ {0, 1}, p ∈ [0, 1]. (5)

• With sample values x1, x2, . . . , xn, the joint density of the random sample
is

n∏
i=1

f(xi; p) =

n∏
i=1

pxi(1− p)1−xi = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi. (6)

• Once we have observed the sample values x1, . . . , xn, we may view (6)
as a function of p:

L(p;x1, . . . , xn) =: L(p) = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi. (7)
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• This is the likelihood function: The joint density function of n random
variables as a function of the parameters, with given values of the random
variable outcomes x1, . . . , xn.

• Following the reasoning in our introductory example, we choose the
maximum likelihood estimator (MLE) of p so as to maximize the
probability of the sample at hand.

• That is, the maximum–likelihood estimator (MLE) is the value of the
unknown parameter which maximizes the likelihood function.
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• Typically, for ease of calculations, the log–likelihood function is
considered; in our example:

logL(p) = log

{
n∏

i=1

f(xi; p)

}
= log

{
p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi

}
= y log p+ (n− y) log(1− p),

where

y =

n∑
i=1

xi. (8)

• The MLE can be obtained by doing the maximization,

d logL(p)

dp
=

y

p
− n− y

1− p
= 0 ⇒ p̂ML =

y

n
=

1

n

n∑
i=1

xi = x, (9)

which appears to be a rather intuitive result.

• As a general method of estimation, maximum likelihood of course needs
a stronger justification than the intuitive argument presented so far.
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• Now consider a continuous random variable X with density f(x; θ), where
θ is a vector of parameters.

• For continuous random variables, the density f(x; θ) cannot be
interpreted as a probability.

• We have

Pr(a ≤ X ≤ b) =

∫ b

a

f(x; θ)dx = F (b; θ)− F (a; θ) (10)

instead, where F is the cumulative distribution function (cdf) of X,

F (b; θ) =

∫ b

−∞
f(x; θ)dx = Pr(X ≤ b). (11)

• Still, however, regions where the density is high have a higher probability
than low–density regions.

• Thus, proceeding with maximum likelihood estimation as before may still
give rise to reasonable results (which, of course, remains to be seen).
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• To illustrate maximum likelihood estimation for continuous distributions,
suppose we have a random sample of size n from a normal distribution
with mean µ and variance σ2, with density (θ = (µ, σ2))

f(x;µ, σ2) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
. (12)

• When the sample values are given by x1, . . . , xn, the likelihood function
is

L(µ, σ2) =

n∏
i=1

f(xi;µ, σ
2) =

n∏
i=1

(
1√
2πσ

exp

{
−(xi − µ)2

2σ2

})

=

(
1

2π

)n/2

(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
.
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• The log–likelihood function is

logL(µ, σ2) =

n∑
i=1

log f(xi;µ, σ
2) = −n

2
log(2π)−n

2
log σ2− 1

2σ2

n∑
i=1

(xi−µ)2.

(13)

• Maximizing (13) with respect to the unknown parameters shows that the
MLE is

µ̂ML =
1

n

n∑
i=1

xi = x, σ̂2
ML =

1

n

n∑
i=1

(xi − x)2. (14)

• That is, the MLE of the normal mean is the sample mean, which we
know is unbiased and consistent by the law of large numbers.

• The MLE of σ2 is not unbiased, since (with one regressor, i.e., a
constant), the unbiased estimator of σ2 is

σ̃2 =
1

n− 1

n∑
i=1

(xi − x)2. (15)
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• However, σ̂2
ML is consistent for σ2, since

σ̂2
ML =

n− 1

n︸ ︷︷ ︸
n→∞−→ 1

σ̃2 p→ σ2. (16)

• This is a general property of MLEs: Although they are not unbiased in
many situations, they are consistent under rather general conditions.

• This is an attractive property, since in many situations unbiased
estimators do not exist, and consistency may be the best that can
be achieved.

• Moreover, the MLE typically has an asymptotic normal distribution;
namely, for a scalar parameter θ, subject to some technical conditions,

√
n(θ̂ML − θ)

d→ N(0, 1/I(θ)), (17)
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where

I(θ) = E

[(
d log f(x; θ)

dθ

)2
]
= −E

(
d2 log f(x; θ)

dθ2

)
. (18)

• Thus, in large samples, we treat θ̂ML as

θ̂ML
a∼ Normal

(
θ,

1

nI(θ̂ML)

)
, (19)

where
a∼ means approximately in large samples.

• Approximation (19) can be used to construct confidence intervals and
conduct t tests of significance.

• If the expectation in (18) cannot be calculated explicitly, we can estimate
it via its sample analogue,

Î(θ̂ML) = −1

n

n∑
i=1

∂2 log f(x; θ̂ML)

∂θ2
= −1

n

∂2 logL(θ̂ML)

∂θ2
. (20)
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• In case of a p–dimensional parameter vector θ = [θ1, θ2, . . . , θp], a similar
result holds. In this case, under general conditions, we may treat the
MLE as

θ̂ML
a∼ N(θ, n−1I(θ)−1), (21)

where the covariance matrix I(θ)−1 is a (symmetric) p × p matrix with
elements

I(θ)ij = −E

[
∂2f(x; θ)

∂θi∂θj

]
, i, j = 1, . . . , p. (22)

• Again, if the integration involved in calculating the expectation in (22)
cannot be done analytically, it can be estimated by means of sample
analogues analogously to (20).

• The ML estimator is also efficient. That is, the asymptotic variance
of the MLE is not larger than the asymptotic variance of any other
consistent and asymptotically normally distributed estimator.

• Due to these properties, maximum likelihood estimation is one of the
most frequently applied approaches to estimation in econometrics.
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• To further appreciate the usefulness of such general results, note that
often closed–form expressions for the estimator are not available (as for
logit and probit models).

• In the two examples considered above, the MLEs have been the sample
mean in the first case (Bernoulli example) and the sample mean and the
sample variance in the second case (normal distribution example), i.e.,
ML estimation gave rise to closed–from estimators.

• The OLS estimator in the linear regression model likewise has a closed–
form solution.

• When a closed–form solution is available, the properties of these solutions
can often be analyzed directly; e.g., we know that the sample mean is
unbiased and consistent for the population mean (by the law of large
numbers) and approximately normal in large samples (by the central limit
theorem); similar results have been obtained for the OLS estimator.

• When closed–from solutions are not available, however, such direct
analysis is not possible, and results about the general properties of an
estimation strategy are rather valuable.
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• As a simple example for this case, consider ML estimation of the mean
µ of a logistic distribution, which has density function

f(x;µ) =
exp{x− µ}

(1 + exp{x− µ})2
, −∞ < x < ∞. (23)

• For a random sample of size n with sample values x1, . . . , xn, the
log–likelihood function is

logL(µ) =

n∏
i=1

f(xi;µ) = log

{
n∏

i=1

exp{xi − µ}
(1 + exp{xi − µ})2

}
(24)

=
∑
i

(xi − µ)− 2

n∑
i=1

log (1 + exp{x− µ}) . (25)
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• Therefore the MLE is the solution of the likelihood equation

0 =
d logL(µ)

dµ
= −n+ 2

n∑
i=1

exp{xi − µ}
1 + exp{xi − µ}

(26)

=

n∑
i=1

[
−1 + 2

exp{xi − µ}
1 + exp{xi − µ}

]
(27)

=

n∑
i=1

exp{xi − µ} − 1

1 + exp{xi − µ}
. (28)

• This equation cannot be solved in closed–from, so numerical methods
have to be used to find the MLE µ̂.
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• Statistical inference for the mean can be based on (19), where the
asymptotic variance follows from and (19)

d2 log f(x;µ)

dµ2
=

d

dµ

(
exp{x− µ} − 1

exp{x− µ}+ 1

)
(29)

= −2
exp{x− µ}

(exp{x− µ}+ 1)2
, (30)

so that

I(θ) = −E

[
d2 log f(x;µ)

dµ2

]
= −

∫ ∞

−∞

d2 log f(x;µ)

dµ2
f(x;µ)dx

= 2

∫ ∞

−∞

exp{x− µ}2

(1 + exp{x− µ})4
dx

y=x−µ
= 2

∫ ∞

−∞

e2y

(1 + ey)4
dy

z=ey
= = 2

∫ ∞

0

z2

(1 + z)4
dz

z

s=1+z
= 2

∫ ∞

1

s− 1

s4
ds = 2

∫ ∞

1

(
1

s3
− 1

s4

)
ds

= 2

(
1

2
− 1

3

)
=

2

6
=

1

3
.
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• Although we don’t have a closed–form solution for the ML estimator
µ̂ML, i.e., the solution of (26), we know from (17) that

√
n(µ̂ML − µ)

d→ N (0, 1/I(θ)) = N(0, 3), (31)

so for statistical inference we treat µ̂ML as (cf. Equation (19))

µ̂ML
a∼ N

(
µ,

3

n

)
, (32)

which can form the basis for the calculation of confidence intervals and
t tests about µ.
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