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Logit and Probit Models for Binary Dependent Variables

• We are interested in modeling the response probability

P(y = 1|x1, x2, . . . , xk) = P(y = 1|x) = p(xi),

where,
x = [1, x1, x2, . . . , xk] (1)

denotes the set of independent variables, including the constant.1

• To overcome the problems of the linear probability model, consider a
specification of the form

P(y = 1|x1, x2, . . . , xk) = G (β0 + β1x1 + · · ·+ βkxk) = G(xβ), (2)

where G(z) is a function such that

0 < G(z) < 1 for all real z. (3)
1Including the constant simplifies the notation somewhat.
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• For example, in the linear probability model, G in (2) is

G(z) = z,

which obviously violates (3).

• Various nonlinear functions are better suited.

• The two most common functions are:

1. the cumulative distribution function (cdf) of the logistic distribution,

G(z) =
ez

1 + ez
=: Λ(z), (4)

which gives rise to the logit model. The response probability is then

P(y = 1|x1, x2, . . . , xk) =
exp{β0 + β1x1 + · · ·+ βkxk}

1 + exp{β0 + β1x1 + · · ·+ βkxk}
. (5)
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2. The standard normal cdf, leading to the probit model,

G(z) = Φ(z) =

∫ z

−∞
ϕ(ξ)dξ, (6)

where ϕ(z) is the standard normal density,

ϕ(z) =
1√
2π

exp

(
−z2

2

)
. (7)

The response probability is then

P(y = 1|x1, x2, . . . , xk) = Φ(β0 + β1x1 + · · ·+ βkxk). (8)

• Both functions have a very similar shape.

• To illustrate this graphically, we have to take into account that the
distributions (4) and (6) have different standard deviations.

• Namely, the standard deviation of a logistic variable with cdf (4) is
π/

√
3 ≈ 1.8138, so we plot the cdf of a normal variable with the same

standard deviation, i.e., the function Φ(
√
3z/π).
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• That is, for many practical purposes,

Λ(z) ≈ Φ(
√
3z/π). (9)

• Thus also

Λ(β0 + β1x1 + · · ·+ βkxk) ≈ Φ(
√
3/π(β0 + β1x1 + · · ·+ βkxk)). (10)

• Hence, if the two functions, up to standardization, would be identical,
then we would observe that logit parameter estimates are about 1.8 times
bigger than the probit estimates.

• However, since the distribution functions are clearly not identical, it turns
out that they tend to be about 1.6 times bigger.2

• According to Greene (Econometric Analysis), “[i]n most applications, the
choice between these two seems not to make much difference.”

2Cf. P. Kennedy (2008): A Guide to Econometrics, 6e, p. 248.
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Partial Effects

• What is the partial effect of a quantitative variable on the response
probability p(x)?

• We calculate
∂p(x)

∂xj
= g(xβ) · βj, (11)

where

g(z) =
dG(z)

dz
=

{
ez

(1+ez)2
= p(x)(1− p(x)) (logit)

ϕ(z) = 1√
2π
e−z2/2 (probit)

is the density of either the logistic (logit) or normal (probit) distribution,
respectively.

• Since g(z) is positive, the partial effect has the same sign as βj.

6



P (y = 1|x) = exp{β0 + β1x}
1 + exp{β0 + β1x}

, β1 = 1.
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P (y = 1|x) = exp{β0 + β1x}
1 + exp{β0 + β1x}

, β0 = 0.
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• Moreover, the relative effects of any two quantitative explanatory
variables do not depend on x.

• In contrast to the linear probability model, however, the magnitude of
the effect depends on x, i.e., the current values of all the explanatory
variables.

• In applications, we may then wish to calculate (11) for various
combinations of interest of the independent variables.

• For reporting purposes, to summarize the magnitudes of the partial
effects, it may often be desirable to have a single scale factor that can
be used to multiply each estimate β̂j in (11).

• For example, with estimates β̂,

g(x̄β̂) = g

β̂0 +

k∑
j=1

β̂jx̄j

 (12)

can be used to this end.
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• The idea behind using (12) is that it reflects the partial effects for the
“average person” in the sample.

• Expression (12) is difficult to interpret when some of the independent
variables are binary, e.g., x1 = 1 for females and zero otherwise.

• In such situations, it is preferable to report the “typical” marginal effect
separately both for females and males.

• Alternatively, the average partial effect may be used, given by the scale
factor

1

n

n∑
i=1

g(xiβ̂) (13)

in (11).
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• For binary (or other discrete) variables, the calculation of partial effects
based on (11) is not tenable.

• Instead we can directly calculate the change in probability induced by a
change in the variable.

• For example, if x1 is a binary variable, then the (estimated) partial effect
from changing x1 from zero to one, with all the other variables fixed at
their mean values, is

G
(
β̂0 + β̂1 + β̂2x2 + · · ·+ β̂kxk

)
−G

(
β̂0 + β̂2x2 + · · ·+ β̂kxk

)
,

(14)
or, when (13) is adopted,

1

n

n∑
i=1

{
G
(
β̂0 + β̂1 + β̂2xi2 + · · ·+ β̂kxik

)
−G

(
β̂0 + β̂2xi2 + · · ·+ β̂kxik

)}
.

• Clearly the method of comparing the implied probabilities for different
values of the independent variables is applicable for quantitative variables
also.
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• Summary measures for quantitative variables can also be calculated in
this spirit. E.g., for a quantitative and roughly continuous variable x1,
we may calculate the centered unit change for x1 as

G

(
β̂0 + β̂1

(
x1 +

1

2

)
+ β̂2x2 + · · ·+ β̂kxk

)
−G

(
β̂0 + β̂1

(
x1 −

1

2

)
+ β̂2x2 + · · ·+ β̂kxk

)
or

1

n

n∑
i=1

{
G

(
β̂0 + β̂1

(
xi1 +

1

2

)
+ β̂2xi2 + · · ·+ β̂kxik

)

−G

(
β̂0 + β̂1

(
xi1 −

1

2

)
+ β̂2xi2 + · · ·+ β̂kxik

)}
.

as analogues to (12) and (13), respectively.

• In summary, “[c]ompared with the linear probability model, the cost of
using probit and logit models is that the partial effects [...] are harder to
summarize” (Wooldridge, Introductory Econometrics, Chapter 17).
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• With estimates β̂ and for small ∆xj, the change in probability of xj is
sometimes approximated by

∆P̂(y = 1|x) ≈ {g(xβ̂)β̂j}∆xj (15)

for given values of x of interest.

• However, in some situations, approximation (15) may give rise to quite
misleading results.3

• Consider the example

p(x1) =
e1.5·x1

1 + e1.5·x1
,

∂p(x1)

∂x1
= 1.5

e1.5·x1

(1 + e1.5·x1)2
.

3E.g., S. B. Caudill and J. D. Jackson (1989): Measuring Marginal Effects in Limited Dependent Variable
Models, The Statistician 38, 203–206.
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• For x = 0.6, p(x1) = 0.7109, and (15) is

1.5× 0.7109× (1− 0.7109) = 0.3083,

which cannot be the increase in probability due to ∆x1 = 1, since
0.7109 + 0.3083 > 1.

• The exact value of a unit increase in x1 is

G(β1(x1+1))−G(β1x1) =
e1.5·(0.6+1)

1 + e1.5·(0.6+1)
− e1.5·0.6

1 + e1.5·0.6
= 0.2059. (16)
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Estimation

• These models are most efficiently estimated by means of maximum
likelihood.

• For given xi, yi is Bernoulli with probability p(xi), i.e., its density

f(yi|xi;β) = p(xi)
yi(1− p(xi))

1−yi, yi ∈ {0, 1}.

• The density of the entire sample (of size n) is

f(y1, . . . , yn|X;β) =

n∏
i=1

p(xi)
yi(1− p(xi))

1−yi. (17)

• When we view (17) as a function of the unknown parameters, for a given
sample, we obtain the likelihood function.
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• Thus, the log–likelihood function is given by

logL(β) =
n∑

i=1

[yi log p(xi) + (1− yi) log(1− p(xi))] . (18)

• The maximum likelihood estimator β̂ is the value of β that maximizes
(18).

• Consider the logit model.

• For this model, with

p(x) =
exβ

1 + exβ
=

exp{β0 + β1x1 + · · ·+ βkxk}
1 + exp{β0 + β1x1 + · · ·+ βkxk}

,

we have

∂p(xi)

∂βj
=

xije
xiβ(1 + exiβ)− xije

2xiβ

(1 + exiβ)
2 =

xije
xiβ

(1 + exiβ)
2

= xijp(xi)(1− p(xi)).
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• Hence, we get the likelihood equations

∂ logL(β̂)

∂β̂j

=

n∑
i=1

[
yi

1

p̂(xi)

∂p̂(xi)

∂β̂j

− (1− yi)
1

1− p̂(xi)

∂p̂(xi)

∂β̂j

]

=

n∑
i=1

[
yi − p̂(xi)

p̂(xi)(1− p̂(xi))

]
∂p̂(xi)

∂β̂j

=

n∑
i=1

(yi − p̂(xi))xij = 0, j = 0, . . . , k. (19)

• Note that, since a constant is included, (19) implies (for j = 0 in (19))

1

n

n∑
i=1

yi =
1

n

n∑
i=1

p̂(xi), (20)

so the average estimated probability of y = 1 is equal to the fraction of
times that y = 1 was actually observed.
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• The likelihood equations (19) have no closed–form solution and have to
be solved numerically.

• The maximum likelihood estimator is consistent and asymptotically
normally distributed, with asymptotic standard errors deriving from
likelihood theory.

• Thus asymptotic t tests can be conducted and asymptotic confidence
intervals calculated in the usual manner.

• Multiple Hypotheses can be tested by means of likelihood ratio tests
(LRT).

• To do so, we calculate the value of the maximized log–likelihood function
both

– under the null (logL0)
– and the alternative hypothesis (logL1),

where the former and the latter correspond to the restricted and
unrestricted models, respectively.
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• Then the likelihood ratio test statistic,

LRT = −2(logL0 − logL1)
asy∼ χ2(q),

where q is the number of restrictions under the null hypothesis, e.g., q
exclusion restrictions.
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Labor Market Participation Estimates
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Table 1: labor market participation of married woman (n = 753)
variable LPM (OLS) Logit Probit Logit/Probit
constant 0.5855

(0.1514)
0.4255
(0.8604)

0.2701
(0.5086)

1.5753

other income −0.0034
(0.0015)

−0.0213
(0.0084)

−0.0120
(0.0048)

1.7753

education 0.0380
(0.0072)

0.2212
(0.0434)

0.1309
(0.0253)

1.6896

experience 0.0395
(0.0058)

0.2059
(0.0321)

0.1233
(0.0187)

1.6690

experience2 −0.0006
(0.0002)

−0.0032
(0.0010)

−0.0019
(0.0006)

1.6714

age −0.0161
(0.0024)

−0.0880
(0.0146)

−0.0529
(0.0085)

1.6655

# kids under 6 years −0.2618
(0.0316)

−1.4434
(0.2036)

−0.8683
(0.1185)

1.6622

# kids 6–18 0.0130
(0.0135)

0.0601
(0.0748)

0.0360
(0.0435)

1.6696

g(x̄β̂) 1 0.2431 0.3906 1
1.6063

1
n

∑n
i=1 g(xiβ̂) 1 0.1786 0.3008 1

1.6842

cp 0.7344 0.7357 0.7344 –
c̃p (25) 1.4424 1.4477 1.4439 –
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• For example, consider a 30 year old women with average other sources
of household income, average education, 5 years of experience, and no
kids between 6 and 18.
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• There is a diminishing marginal effect of the third young child (whereas
in the LPM, the marginal effect is constant).

• But for the relevant range (cf. the numbers in the histogram on previous
slide) the probabilities are not that different.
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red (dashed): linear; blue (solid): probit; green (dash–dotted): logit
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Likelihood Ratio Tests (LRT)

• To illustrate the use of the LRT, we estimate several logit models via
maximum likelihood:

Table 2: X indicates whether a variable is in the model
variable Model0 Model1 Model2 Model3 Model4

constant (β0) X X X X X
other income (β1 ) X X X X
education (β2 ) X X X X
experience (β3) X X X
experience2 (β4 ) X X X

age (β5 ) X X X X
# kids under 6 years (β6) X X X

# kids 6–18 (β7 ) X X
logL −514.87 −401.76 −402.09 −432.78 −454.18

25



• We first do a test for the overall significance of the (logistic) regression,
i.e., test Model0 against Model1, where the null hypothesis is

H0 : β1 = β2 = β3 = β4 = β5 = β6 = β7 = 0. (21)

• The likelihood ratio test statistic is

2× {−401.76− (−514.87)} = 226.2161.

• Comparing this with the χ2 distribution with 7 degrees of freedom, we
observe that this is significant at any reasonable level. For example, the
critical value at the 5% level is 14.0671.
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• As the t statistic of kids between 6 and 18 is not significant, we expect
to obtain the same result from an LRT.

• The test statistic for Model2 against Model1 (H0 : β7 = 0) is

2× {−401.76− (−402.09)} = 0.6480,

which is indeed not significant given the asymptotically valid χ2 statistic
with one degree of freedom.

• If we were interested in whether children (older or younger) have an
impact at all, we test Model3 against Model1 (H0 : β6 = β7 = 0), which
gives rise to two degrees of freedom, with test statistic

2× {−401.76− (−432.78)} = 62.0225,

which is highly significant at essentially any significance level.

• Same is true for experience (Model4 against Model1), again using a
χ2(2) distribution.
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Table 3: Quantiles of the χ2 distribution (ν denotes degrees of freedom)
ν 0.9 0.95 0.975 0.99

1 2.7055 3.8415 5.0239 6.6349

2 4.6052 5.9915 7.3778 9.2103

3 6.2514 7.8147 9.3484 11.3449

4 7.7794 9.4877 11.1433 13.2767

5 9.2364 11.0705 12.8325 15.0863

6 10.6446 12.5916 14.4494 16.8119

7 12.0170 14.0671 16.0128 18.4753

8 13.3616 15.5073 17.5345 20.0902

9 14.6837 16.9190 19.0228 21.6660

10 15.9872 18.3070 20.4832 23.2093

11 17.2750 19.6751 21.9200 24.7250

12 18.5493 21.0261 23.3367 26.2170

13 19.8119 22.3620 24.7356 27.6882

14 21.0641 23.6848 26.1189 29.1412

15 22.3071 24.9958 27.4884 30.5779
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Goodness–of–Fit

• McFadden pseudo R2,

R2
pseudo = 1− logL(estimated model)

logL(β1 = β2 = · · · = βk = 0)
, (22)

i.e., the maximized log–likelihood of a given model is compared with that
of a model without explaining variables (constant probability).

• Note that, since the log–likelihood for these models is always negative, a
better fit is indicated by it being closer to zero in magnitude.

• Quantity (22) is zero if the independent variables have no explanatory
power.

• It is unity for a “perfect fit” in the sense that p(xi) = 1 for yi = 1 and
p(xi) = 0 for yi = 0, since then the log–likelihood of the model is zero.
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• But this will never happen with logit and probit (except in pathological
cases, when it signals that something is wrong with the model).

• For example, if the sign of x1 is a perfect predictor of y, then β1 → ±∞
leads to a “perfect fit”.

• This may happen, e.g., if one mistakenly includes a dummy variable that
is nearly identical to the dependent variable.

• Thus, a “perfect fit” just indicates a flaw in the model.

• Note that the restricted likelihood in (22) is just

logL(β1 = β2 = · · · = βk = 0) = n1 log
(n1

n

)
+(n−n1) log

(
n− n1

n

)
,

where

n1 =

n∑
i=1

yi.
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• This is because, with a constant probability P(y = 1), β̂0 will be
determined so that

P(y = 1) =
eβ̂0

1 + eβ̂0
=

1

n

n∑
i=1

yi =
n1

n
,

see Equation (20).

• Clearly 0 ≤ R2
pseudo < 1.
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• An alternative way to assess goodness–of–fit is by considering the percent
correctly predicted.

• For example, our predictor may be

ŷi = 1 if p(xi) > 0.5 and ŷi = 0 otherwise. (23)

• This can be done for the linear probability model even in the case that
some probabilities are not in [0, 1].

• The percent correctly predicted of a model is the percentage of times
for which ŷi = yi, which can be compared with that of a “naive” model
(intercept only), where

ŷi =

{
1 for all i if n1/n > 0.5

0 for all i otherwise.
(24)
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• The percent correctly predicted for each of the outcomes separately is
also of interest.

• In particular, if n1/n is rather large, then the naive model will have a
high percent correctly predicted, but the challenge is then to predict the
(unconditionally) low–probability events when y = 0.

• Let nij, i, j = 0, 1, be the number of times that yi = i has been predicted
and yi = j has been observed.

Table 4: Predicted and observed outcomes
y = 0 y = 1

ŷ = 0 n00 n01

ŷ = 1 n10 n11∑
n0 n1

• The overall percent correctly predicted (cp) is

cp =
n00 + n11

n
=

n00 + n11

n00 + n10 + n01 + n11
,
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and those for the outcomes y = 0 and y = 1 are

cp0 =
n00

n0
=

n00

n00 + n10
, and cp1 =

n11

n1
=

n11

n01 + n11
,

respectively.

• Measure
c̃p := cp0 + cp1 (25)

should exceed unity if the model predicts better than the naive
specification (for which it is always equal to one).

• These measures can also be used to evaluate out–of–sample forecasts,
which are of predominant interest in some applications.

• Henriksson and Merton (1981) develop a test based on (25) for assessing
statistical significance of market timing skills of investment managers.4

4On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting
Skills, Journal of Business, 54, 513–533.
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• As an example, consider the logit model for the labor market participation
of married women.

Table 5: Predicted and observed outcomes for the labor force participation

example
y = 0 y = 1

ŷ = 0 207 81
ŷ = 1 118 347∑

325 428

• Thus, the percent correctly predicted is

pc =
n00 + n11

n01 + n10 + n00 + n10
=

207 + 347

753
= 0.7357. (26)

• The overall frequency of ones is

1

753

753∑
i=1

yi =
n11 + n01

753
=

347 + 81

753
=

428

753
= 0.5684, (27)
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which is the percent correctly predicted of a model with an intercept
only.

• Moreover

cp0 =
n00

n0
=

207

325
= 0.6369, and cp1 =

n11

n1
=

347

428
= 0.8107. (28)

so
p̃c = cp0 + cp1 = 1.4477. (29)

• The intercept–only model would correctly predict all of the ones but
none of the zeros (because the overall frequency (27) > 0.5), so for this
“model” always p̃c = 1 in (29).
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