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Heteroskedasticity

• Assumption of homoskedasticity,

Var(ui|xi1, . . . , xik) = E(u2
i |xi1, . . . , xik) = σ2.

• That is, the variance of u does not depend on the explanatory variables.

• Under heteroskedasticity, the variance of the error ui depends on
xi = [xi1, xi2, . . . , xik], that is

E(u2
i |xi1, . . . , xik) = h(xi) = σ2

i .

• Assume that the other Gauß–Markov assumptions hold.
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• As an example, consider a model for average monthly credit card
expenditures for n = 72 individuals,

ccexp = β0 + β1income + β2income2 + β3age + β4ownrent + u, (1)

where

– ccexp are credit card expenditures
– ownrent is a dummy variable for home ownership

• We may plot the residuals of this regression against the independent
variables to see if a distinctive pattern appears.

• Variance appears to increase with the income.
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Consequences of Heteroskedasticity

• Provided the other Gauß–Markov Assumptions are valid, then the OLS
estimator is still

– unbiased
– consistent
– asymptotically normally distributed.

• However, the usual standard errors are biased, and therefore t– and
F–tests based on these standard errors are not valid.

• The OLS estimator is also no longer efficient (not BLUE).
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• To illustrate, consider the slope estimator in the simple linear regression
model

yi = β0 + β1xi + ui, (2)

i.e.,

β̂1 = β1 +

n∑
i=1

(xi − x̄)ui

n∑
i=1

(xi − x̄)2
= β1 +

n∑
i=1

(xi − x̄)ui

ns2
x

= β1 +
n∑

i=1

wiui,

where

wi =
xi − x

ns2
x

, s2
x =

1
n

n∑

i=1

(xi − x)2. (3)

• This shows that

Var(β̂1|X) =
n∑

i=1

w2
i Var(ui|xi) =

n∑
i=1

(xi − x̄)2σ2
i

n2s4
x

. (4)
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• The variance

Var(β̂1|X) =

n∑
i=1

(xi − x̄)2σ2
i

n2s4
x

. (5)

reduces to our previous formula

Var(β̂1|X) =
σ2

n∑
i=1

(xi − x̄)2
=

σ2

ns2
x

(6)

only if σ2
i = σ2 for i = 1, . . . , n.
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• For the general model,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ui, i = 1, . . . , n,

or




y1

y2
...

yn




︸ ︷︷ ︸
=y

=




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
... ... ... ...
1 xn1 xn2 · · · xnk




︸ ︷︷ ︸
=X




β0

β1
...

βk




︸ ︷︷ ︸
=β

+




u1

u2
...

un




︸ ︷︷ ︸
=u

,

y = Xβ + u

with

β̂ = (X ′X)−1X ′y,
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we have

Cov(β̂|X) =




Var(bβ0|X) Cov(bβ0,bβ1|X) ··· Cov(bβ0,bβk|X)

Cov(bβ0,bβ1|X) Var(bβ1|X) ··· Cov(bβ1,bβk|X)
... ... . . . ...

Cov(bβ0,bβk|X) Cov(bβk,bβ1|X) ··· Var(bβk|X)




= E[(β̂ − E(β̂))(β̂ − E(β̂))′|X]

= E
[
(X ′X)−1X ′uu′X(X ′X)−1|X]

= (X ′X)−1X ′E(uu′|X)X(X ′X)−1.

• If E(uu′|X) = σ2I, this reduces to

Cov(β̂|X) = σ2(X ′X)−1,

which was the basis for the inferential procedures discussed so far.
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• Under heteroskedasticity, we have

E(uu′|X) =




σ2
1 0 · · · 0
0 σ2

2 · · · 0
... ... . . . ...
0 0 · · · σ2

n


 =: Ω.

• The covariance matrix of the errors is still diagonal.

• The appropriate way to deal with heteroskedasticity depends on whether
we (believe that we) know how the variance depends on the independent
variables, at least approximately.

• We first consider the situation where we do not want to make an
assumption about the functional relationship

E(u2
i |xi1, . . . , xik) = h(xi1, . . . , xik).

• This leads to the use of heteroskedasticity–consistent standard errors.
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Heteroskedasticity–Robust Standard Errors

• The basic idea is to still use the ordinary least squares (OLS) estimator
but to appropriately adjust the standard errors used in hypotheses tests.

• Last week, when discussing the asymptotic normality of

β̂1 = β1 +
1
n

∑
i(xi − x)ui

1
n

∑
i(xi − x)2

, (7)

we have seen that

√
n(β̂1 − β1)

d→ N

(
0,

E{(xi − µx)2u2
i}

Var(x)2

)
. (8)

• In case of homoskedasticity, i.e., E(u2
i |xi) = σ2, it turns out that

E{(xi − µx)2u2
i} = σ2E(xi − µx)2 = σ2Var(x). (9)
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• When we have heteroskedasticity, a natural consistent estimator for the
asymptotic variance of β̂1 is obtained by replacing population moments
with sample moments, i.e.,

V̂ ar(β̂1) =

1
n

n∑
i=1

(xi − x)2u2
i

n

(
1
n

n∑
i=1

(xi − x)2
)2. (10)

• However, (10) is not feasible since the errors ui, i = 1, . . . , n, in the
numerator are not observable.

• However, it turns out (White, 1980) that to obtain a feasible consistent
estimator we can estimate E{(xi − µx)2u2

i} via

1
n

n∑

i=1

(xi − x̄)2û2
i ,

where ûi is the standard OLS residual.
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• Thus, the heteroskedasticity–consistent (HC) standard error of the

slope coefficient β̂1 in the simple linear regression model is

σ̂2
bβ1,HC

= V̂ar(β̂1) =

1
n

n∑
i=1

(xi − x̄)2û2
i

ns4
x

, s2
x =

1
n

n∑

i=1

(xi − x)2. (11)

• (11) consistently estimates the asymptotic variance both in case of
homo– and heteroskedasticity.

• That is, in large samples, we can treat β̂1 as

β̂1
a∼ N(β1, σ̂

2
bβ1,HC

), (12)

where
a∼ denotes “approximately in large samples”.

• Heteroskedasticity–robust t statistics can be calculated based on (12).

• They are calculated in the same way as before, with the exception that
robust standard errors are used.
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• Note that their use is based on asymptotic arguments.

• Such standard errors are often referred to as White standard errors due
to White (1980).1

1H. White (1980): A Heteroskedasticity–Consistent Covariance Matrix Estimator and a Direct Test for
Heteroskedasticity, Econometrics, 48, 817-838.
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Robust standard errors for the multiple regression
model

• The covariance matrix is

Cov(β̂|X) = (X ′X)−1X ′E(uu′|X)X(X ′X)−1,

• Now matrix

X ′E(uu′|X)X =
n∑

i=1

xix
′
iE(u2

i |xi),

where xi = [xi1, . . . , xik]′, is replaced with

n∑

i=1

xix
′
iû

2
i

to obtain an asymptotically valid covariance matrix estimator under
heteroskedasticity (and homoskedasticity).

14



• Thus we estimate the asymptotic covariance matrix via

Ĉov(β̂) = (X ′X)−1X ′Ω̂X(X ′X)−1, (13)

where

Ω̂ =




û2
1 0 · · · 0
0 û2

2 · · · 0
... ... . . . ...
0 0 · · · û2

n


 . (14)
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• Once heteroskedasticity–consistent standard errors have been computed,
heteroskedasticity–consistent t statistics can be calculated in the
usual way.

• The only difference between the usual t statistic and the
heteroskedasticity–robust t statistic is in how the standard error in
the denominator is calculated.

• Multiple (linear) hypotheses can likewise be tested, although the test
statistics used so far (i.e., the F test) are no longer appropriate.

• The relevant test is known as a Wald test.2

2For the form of the test statistic and an example, see, for example, Greene, Econometric Analysis, Ch.
11.2.
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Testing for Heteroskedasticity

• Informal “test”: Plot OLS residuals against the independent variables,
as in the credit card example.

• In principle, a plot against all the independent variables may be required.
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Goldfeld–Quandt Test

• This compares the variance of two groups by means of an F test, where
under the null hypothesis of homoskedasticity,

H0 : σ2
1 = σ2

2, H1 : σ2
1 6= σ2

2. (15)

• For example, we may suppose that the variance differs by gender.

• Calculate the regression of interest separately for both groups (with n1

observations in Group 1 and n2 observations in Group 2).

• From these regressions, estimate the error variances

σ̂2
1 =

SSR1

n1 − k − 1
, σ̂2

2 =
SSR2

n2 − k − 1
.
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• Under the null hypothesis (15) of equal variances, the test statistic

F =
σ̂2

1

σ̂2
2

=
SSR1/(n1 − k − 1)
SSR2/(n2 − k − 1)

(16)

has an (exact3 or approximate) F distribution with n1 − k − 1 degrees
of freedom in the numerator and n2 − k − 1 degrees of freedom in the
denominator.

• The larger residual variance is used in the numerator, i.e., in (16), it has
been assumed that σ̂2

1 > σ̂2
2.

• E.g., we tested for gender–specific slope coefficients in the wage equation

log(wage) = β0 + β1educ + β2exper + β3exper2 + β4tenure + β5tenure2.

• For the Chow test (for differences in regression functions) to be valid,
we need to test whether the error variance is the same for both groups.

3This holds if the errors are normal, i.e., the assumptions of the classical linear model apply.
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• The sample has n1 = 274 men and n2 = 252 women (n = n1 + n2 =
526).

• From Tables 3 and 4 of the last slide set, we have

σ̂2
1 =

43.2453
274− 6

= 0.1614, σ̂2
2 =

36.6751
252− 6

= 0.1491,

so the test statistic (16) is

F =
0.1614
0.1491

= 1.0824.

• The critical value of the appropriate F distribution is 1.2262, so we
cannot reject the null of homoskedasticity.
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• The Goldfeld–Quandt test can also be applied in cases where we suppose
the variance to depend on the value of a quantitative variable, e.g.,

σ2
i = σ2xij, i = 1, . . . , n.

• Then we rank all the observations based on this xj and thereby separate
the observations into those with low and high variances.

• In the credit card example, we sort the n = 72 observations according to
income (= x1), and then the regression is calculated separately both for
the first and the second 36 observations.

• The sum of squares for the first and the second regression is 32.6247 and
489.4130, respectively, with gives rise to a Goldfeld–Quandt test statistic

F =
SSR1/(n1 − k − 1)
SSR2/(n2 − k − 1)

=
489.4130/(36− 4− 1)
32.6247/(36− 4− 1)

= 15.0013,

which can be compared with the 5% (1%) critical value of the F (31, 31)
distribution, given by 1.8221 (2.3509).
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Breusch–Pagan Test

• The Breusch–Pagan test can be used when we have an idea about which
variables have an impact on the error term variance.

• Let this set of regressors be x1, . . . , xp.

• We may reasonably assume that the magnitude of the OLS residuals, ûi,
has something to say about σ2

i .

• Thus specify the regression

û2
i = δ0 + δ1xi1 + · · ·+ δpxip + vi. (17)

where the ûi have been obtained from standard OLS.

• Then calculate the coefficient of determination R2 from the regression
(17).
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• The test statistic to test the null hypothesis

H0 : δ1 = δ2 = · · · = δp = 0

is
BP = nR2 asy∼ χ2(p).

• For the credit card example, we might specify the test based on

û2
i = δ0 + δ1incomei + δ2income2

i + vi. (18)

• (18) gives rise to a coefficient of determination R2 = 0.0859, so

BP = n×R2 = 72× 0.0859 = 6.1869,

so we would reject homoskedasticity by comparison with the 5% critical
value of the χ2 distribution with two degrees of freedom, which is 5.9915.
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White Test

• The White test is based on a comparison between the OLS
covariance matrix under homoskedasticity and under a general form
of heteroskedasticity.

• It is carried out along the following lines.

• An auxiliary regression is calculated as in the Breusch–Pagan test, but
the ûis are regressed, in addition to all independent variables and an
intercept, on all squares and all cross products of the independent
variables.
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• For example, in a model with k = 3 independent variables, the auxiliary
regression is

û2 = δ0 + δ1x1 + δ2x2 + δ3x3 + δ4x
2
1 + δ5x

2
2 + δ6x

2
3

+δ7x1 · x2 + δ8x1 · x3 + δ9x2 · x3 + v, (19)

and we test
H0 : δ1 = δ2 = · · · = δ9 = 0

as in the Breusch–Pagan test (i.e., comparing with the critical value of
the appropriate χ2 distribution).

• Note that there may be redundant terms in the regression (19), e.g., if
squares of a variable are included in the original regression.

• In this case, the redundant terms are dropped and the degrees of freedom
are reduced appropriately.
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• The White test is very general. Its power, however, may be rather low
against certain alternatives, in particular if the number of observations is
small.

• For the credit card example, we have the constant plus 12 variables,
since ownrent2 = ownrent, and income× income = income2.

• The regression gives R2 = 0.1990.

• Thus LM = 72 × 0.1990 = 14.3290, which is, however, not significant
when compared to the 5% critical value of the χ2(12) distribution, which
is 21.0261.

• If we have an idea about the nature of heteroskedasticity (i.e., the
variables affecting the error term variance), the Breusch–Pagan test has
more power in detecting heteroskedasticity.
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Generalized (or Weighted) Least Squares Estimation

• Suppose that the heteroskedastic pattern of the variance is known up to
a multiplicative constant, i.e., in

E(u2
i |xi) = σ2h(xi) = σ2hi, (20)

the function h(xi) is known.

• In this case, it is possible to obtain an efficient (BLUE) estimator along
with valid t and F statistics (which have known exact distributions under
the Gaussianity assumption) by means of generalized least squares.

• The idea is to transform the linear equation such that it has
homoskedastic errors.
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• Consider the equation

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ui, (21)

where
E(u2

i |xi) = σ2hi. (22)

• As we have assumed hi to be known, we can consider the transformed
residual u?

i = ui/
√

hi, with variance

E(u?2
i |xi) = E

[(
ui√
hi

)2
∣∣∣∣∣ xi

]
=

E(u2
i |xi)
hi

=
σ2hi

hi
= σ2,

so u?2
i is homoskedastic, i.e.,

E(u?2
i |xi) = σ2 for all i. (23)
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• Thus, we divide equation (21) by
√

hi to obtain

yi/
√

hi = β0/
√

hi+β1xi1/
√

hi+β2xi2/
√

hi+· · ·+βkxik/
√

hi+ui/
√

hi,
(24)

or
y?

i = β0x
?
i0 + β1x

?
i1 + β2x

?
i2 + · · ·+ βkx

?
ik + u?

i , (25)

where

x?
i0 = 1/

√
hi, x?

ij = xij/
√

hi, j = 1, . . . , k, y?
i = yi/

√
hi. (26)

• Equation (25) satisfies the Gauß–Markov assumptions in view of (23).

• Thus, estimating Equation (25) gives best linear unbiased estimators
(BLUE).

• Moreover, if u is normal, u? is also normal, and Equation (25) satisfies the
assumptions of the classical linear model (Gauß–Markov + normality).

• In this case, exact t and F tests can be conducted based on the
transformed variables.
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• That is, after the variables have been transformed as in (24), standard
OLS inferential procedures can be applied.

• The multiplicative constant σ2 can be estimated as

σ̂2 =
1

n− k − 1

n∑

i=1

û?2
i .

• Parameter estimates and test results, however, have to be interpreted in
terms of the original equation, i.e., Equation (21).

• Also note that the R2 calculated from the transformed equation may not
be that interesting, since it measures the variation in y? explained by x?

j ,

j = 1, . . . , k.4

• This procedure is an example of generalized least squares (GLS), which
can generally applied when the covariance matrix of the uis is not equal
to σ2I.

4It may be useful for doing F tests, however.
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• The GLS estimator correcting for heteroskedasticity (with diagonal error
term covariance matrix) is also referred to as weighted least squares,
since it minimizes the weighted sum of squared residuals, where each
squared residual is weighted by the inverse of its variance.

• This can be seen by noting that OLS estimation of Equation (25)
amounts to minimizing

n∑

i=1

û?2
i =

n∑

i=1

(y?
i − β̂0x

?
i0 − β̂1x

?
i1 − β̂2x

?
i2 − · · · − β̂kx

?
ik)

2

=
n∑

ii=1

(yi − β̂0xi0 − β̂1xi1 − β̂2xi2 − · · · − β̂kxik)2

hi
.

• This intuition is that less weight is given to observations with a relatively
high error variance, and thus they have a smaller influence on the
estimates.
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• Note that in the transformed model all variables are transformed,
including the constant, which implies that the transformed model
(usually) does not have an intercept.5

5There will be an intercept in the transformed equation if hi = x2
ij for one of the independent variables

xj.
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• As an example, in the simple linear regression model through the origin,

yi = β1xi + ui,

the slope estimator is

β̂1 =

n∑
i=1

x?
i y

?
i

n∑
i=1

x?2
i

=

n∑
i=1

xiyi/hi

n∑
i=1

x2
i/hi

=

n∑
i=1

xi(xiβ1 + ui)/hi

n∑
i=1

x2
i/hi

(27)

= β1 +

n∑
i=1

xiui/hi

n∑
i=1

x2
i/hi

. (28)

• The variance is

Var(β̂1) =
∑

i x
2
i/h2

iVar(ui)(
n∑

i=1

x2
i/hi

)2 =
∑

i x
2
i/h2

i (σ
2hi)(

n∑
i=1

x2
i/hi

)2 =
σ2

n∑
i=1

x2
i/hi

.
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• The OLS estimator,

β̂OLS
1 =

∑
i xiyi∑
i x

2
i

= β1 +
∑

i xiui∑
i x

2
i

,

• has variance

Var(β̂OLS
1 ) =

∑
i x

2
iVar(ui)

(
∑

i x
2
i )

2 =
∑

i x
2
i (σ

2hi)

(
∑

i x
2
i )

2 = σ2

∑
i x

2
ihi

(
∑

i x
2
i )

2,

and

σ2

∑
i x

2
i/hi

≤ σ2

∑
i x

2
ihi

(
∑

i x
2
i )

2 ⇔
(∑

i

x2
i

)2

≤
(∑

i

x2
i/hi

)(∑

i

x2
ihi

)
,

• The last inequality holds by the Cauchy–Schwarz inequality, stating that

(∑

i

wivi

)2

≤
(∑

i

w2
i

)(∑

i

v2
i

)
. (29)
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(In (29), take vi = xi/
√

hi, and wi = xi

√
hi.)

• Proof of the Cauchy–Schwarz inequality: For any constant λ, we have

∑

i

(wi − λvi)2 =
∑

i

w2
i − 2λ

∑

i

wivi + λ2
∑

i

v2
i ≥ 0. (30)

Now let λ = (
∑

i wivi)/(
∑

i v
2
i ).

Then (30) becomes

∑

i

w2
i − 2

(
∑

i wivi)
2

∑
i v

2
i

+
(
∑

i wivi)
2

∑
i v

2
i

≥ 0 (31)

∑

i

w2
i −

(
∑

i wivi)
2

∑
i v

2
i

≥ 0. (32)

Rearranging gives the result.
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Matrix formulation of generalized least squares (GLS)

• If the variances are known up to a multiplicative constant, as in (20), let

Ω =




h1 0 · · · 0
0 h2 · · · 0
... ... . . . ...
0 0 · · · hn


 . (33)

• We transform the linear equation y = Xβ + u:

y = Xβ + u (34)

Ω−1/2y = Ω−1/2Xβ + Ω−1/2u (35)

y? = X?β + u?, (36)

where

y? = Ω−1/2y, X? = Ω−1/2X, u? = Ω−1/2u,
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and

Ω−1/2 =




h
−1/2
1 0 · · · 0
0 h

−1/2
2 · · · 0

... ... . . . ...

0 0 · · · h
−1/2
n


 . (37)

• GLS estimation amounts to OLS estimation of Equation (36), i.e.,

β̂GLS = (X?′X?)−1X?′y?

= (X ′Ω−1/2Ω−1/2X)−1X ′Ω−1/2Ω−1/2y

= (X ′Ω−1X)−1X ′Ω−1y,

(Ω−1/2Ω−1/2 = Ω−1), and the covariance matrix of β̂GLS is

Var(β̂GLS|X) = σ2(X?′X?)−1 = σ2(X ′Ω−1X)−1. (38)

• Note that the error term covariance matrix is σ2Ω.
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Unknown Pattern of Heteroskedasticity: Feasible
Generalized Least Squares (FGLS)

• In practice, the exact form of the heteroskedasticity function h(x) may
often (or usually) not be known.

• In this case, we may try to model this function by means of a relatively
low–dimensional parameter vector.

• This results in a sequence of estimates ĥi, i = 1, . . . , n, which are then
used for calculating the transformed regression equation.

• This is referred to as feasible generalized least squares (FGLS).

• Provided the parameters in the variance function hi are consistently
estimated, the FGLS estimator has (very generally) the same properties
as the GLS estimator asymptotically.
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• However, the small sample properties of GLS are not shared by FGLS.

• For example, in general, FGLS is not unbiased.

• To illustrate, consider the FGLS estimator of the slope coefficient in the
simple linear model, where, replacing σ2

i with σ̂2
i in (27),

β̂1 =
∑

i x̂
?
i ŷ

?
i∑

i x̂
?2
i

=
∑

i xiyi/ĥi∑
i x

2
i/ĥi

= β1 +
∑

i

xi/ĥi∑
i x

2
i/ĥi

ui

• Now ĥi, i = 1, . . . , n, is estimated using the data at hand and thus
depends on u1, . . . , un, so that

E

{∑

i

xi/ĥi∑
i x

2
i/ĥi

ui

}
6=

∑

i

xi/ĥi∑
i x

2
i/ĥi

E(ui) = 0.

• In small samples, due the unavoidable estimation error in the ĥi, there is
no guarantee that the FGLS estimator outperforms OLS, although this
may be the case in situations of sufficiently strong heteroskedasticity.
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Multiplicative Heteroskedasticity

• A common (and very flexible) parametric form of heteroskedasticity is
multiplicative heteroskedasticity.

• This assumes that

E(u2|x) = σ2hi = σ2 exp{δ1z1 + · · ·+ δ`z`}, (39)

where z1, . . . , z` are functions of x1, . . . , x2.

• For example, if the variance if proportional to an unknown power α of
x1 (clearly then it must be that x1 > 0), then

σ2
i = σ2xα

i1 = σ2xα
i1 = σ2 exp{α log(xi1)}.

• To determine the parameters in (39), we use the fact that the magnitude
of the regression residuals ûi contains some information about σ2

i ,
i = 1, . . . , n.
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• In fact, a consistent estimator of parameters δ1, . . . , δ` in (39) can be
obtained by OLS estimation of

log(û2
i ) = α + δ1zi1 + · · ·+ δkzi` + ei, (40)

with ei is an error term.

• Thus the steps of the procedure are as follows:

– First run OLS to get the residuals û1, . . . , ûn, and calculate log û2
i ,

i = 1, . . . , n
– Then run the regression (40) and calculate ĥi = exp{δ̂1xi1 + · · · +

δ̂kxik}.
– Use these estimates ĥi, i = 1, . . . , n, to apply the generalized least

squares method, i.e., run OLS on the transformed equation (25).

• This is referred to as a two–step estimator.
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• We consider various specifications for the credit card example.

Table 1: Credit Card Expenditures, x1 = income
OLS σ2

i = σ2xi1 σ2
i = σ2xα

i1

variable estimate std. error estimate std. error estimate std. error

const −2.3715 1.9935 −1.8187 1.6552 −1.9333 1.7108

income 2.3435 0.8037 2.0217 0.7678 2.0888 0.7720

income2 −0.1500 0.0747 −0.1211 0.0827 −0.1277 0.0808

age −0.0308 0.0551 −0.0294 0.0460 −0.0296 0.0476

ownrent 0.2794 0.8292 0.5049 0.6988 0.4736 0.7214

In the rightmost model, α̂ = 0.8193.
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Note I

• As noted above, if the parameters in the variance function hi are
consistently estimated, the FGLS estimator has the same properties as
the GLS estimator asymptotically.

• E.g., its asymptotic covariance matrix is (38), where in practice Ω is

replaced by Ω̂.

• However, if the variance function is (seriously) misspecified, it may be
inferior to OLS even for large samples.

• Thus OLS may often be actually preferable: Although it may be less
efficient than FGLS when the variance function is (approximately)
known, it is robust when used with appropriate (heteroskedasticity–
robust) standard errors, even if we have no concrete ideas about the
variance function.
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Note II

• Often it may be possible to overcome heteroskedasticity in advance, e.g.,
by transforming the data.

• For example, in the credit card example, taking logs reduces the variation
in the credit card expenditures for higher incomes.

• See the figure on the next slide.

• The upper panel shows the residuals of regression

ccexp = β0 + β1income + β2income2 + β3age + β4ownrent + u, (41)

• and the lower panel shows those of

log(ccexp) = β0 + β1income + β2income2 + β3age + β4ownrent + u.
(42)
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The Linear Probability Model (LPM)

• We have seen that heteroskedasticity is unavoidable in the LPM.

• One way to proceed is to use heteroskedasticity–consistent standard
errors.

• We may also use weighted least squares by employing the formula

E(u2|x) = p(x)(1− p(x)),

but this is difficult when some of the probabilities are actually negative.

• So first alternative would perhaps be appropriate in case of the model of
labor market participation considered above.
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Table 2: labor market participation
variable coefficient standard se White se

constant 0.5855 0.1542 0.1514

other income −0.0034 0.0014 0.0015

education 0.0380 0.0074 0.0072

experience 0.0395 0.0057 0.0058

experience2 −0.0006 0.0002 0.0002

age −0.0161 0.0025 0.0024

# kids under 6 years −0.2618 0.0335 0.0316

# kids 6–18 0.0130 0.0132 0.0135

“se” is standard error, “White se” refers to the heteroskedasticity–robust
standard errors.

• Note that the standard errors are very similar.
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Table 3: 95% Quantiles of the F distribution (= 5% critical values) (ν1

numerator degrees of freedom; ν2 denominator degrees of freedom)
ν2/ν1 2 3 4 5 6 7 8 9 10

10 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782

15 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437

20 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 2.3479

25 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 2.2365

30 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646

35 3.2674 2.8742 2.6415 2.4851 2.3718 2.2852 2.2167 2.1608 2.1143

40 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 2.0772

45 3.2043 2.8115 2.5787 2.4221 2.3083 2.2212 2.1521 2.0958 2.0487

50 3.1826 2.7900 2.5572 2.4004 2.2864 2.1992 2.1299 2.0734 2.0261

60 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401 1.9926

70 3.1277 2.7355 2.5027 2.3456 2.2312 2.1435 2.0737 2.0166 1.9689

80 3.1108 2.7188 2.4859 2.3287 2.2142 2.1263 2.0564 1.9991 1.9512

90 3.0977 2.7058 2.4729 2.3157 2.2011 2.1131 2.0430 1.9856 1.9376

100 3.0873 2.6955 2.4626 2.3053 2.1906 2.1025 2.0323 1.9748 1.9267

∞ 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799 1.8307
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Table 4: Quantiles of the χ2 distribution (ν denotes degrees of freedom)
ν 0.9 0.95 0.975 0.99

1 2.7055 3.8415 5.0239 6.6349

2 4.6052 5.9915 7.3778 9.2103

3 6.2514 7.8147 9.3484 11.3449

4 7.7794 9.4877 11.1433 13.2767

5 9.2364 11.0705 12.8325 15.0863

6 10.6446 12.5916 14.4494 16.8119

7 12.0170 14.0671 16.0128 18.4753

8 13.3616 15.5073 17.5345 20.0902

9 14.6837 16.9190 19.0228 21.6660

10 15.9872 18.3070 20.4832 23.2093

11 17.2750 19.6751 21.9200 24.7250

12 18.5493 21.0261 23.3367 26.2170

13 19.8119 22.3620 24.7356 27.6882

14 21.0641 23.6848 26.1189 29.1412

15 22.3071 24.9958 27.4884 30.5779
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