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Types of Variables
• As the two main types of variables, we distinguish between

– categorial, and
– quantitative

variables.

• Categorial variables may come as nominal and ordinal variables.

• Nominal variables allow only for qualitative classification, i.e., we can
only decide whether an individual in our sample belongs to certain distinct
categories, but we cannot rank these categories, i.e., there is no natural
ordering. Typical examples are

– Gender, or
– Marital Status, or
– Religion, or
– Industry of a Firm (Manufacturing, Retail, ...)

• An ordinal variable is a categorial variable where the different categories
can be ordered in a meaningful sequence, but the “differences” between
the categories cannot be interpreted.
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• For example, data on education may consist of the highest level of
education attained, such as

– High School
– Bachelor
– Master
– Ph.D.

• A quantitative variable is a variable with a natural ordering of the
observations and where numerical differences between values have a
meaning: The difference in age between a 5–year old an a 10–year old is
the same as that between a 10–year old and a 15–year old.

• Until now, we have considered examples of regression analysis using
quantitative variables.

• Now we use binary or dummy variables to include categorial information.
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• A binary or dummy variable

– takes the value 1 for some observations to indicate the presence of an
effect or group membership,

– and takes the value 0 for the remaining observations.

• For example, in a study of individual wage determination, we may define
a variable female that takes on the value 1 for females and the value 0
for males.

• Same for a variable married.

• We may also define a variable marrfem that takes on the value 1 for
married females and the value 0 for single females and males (married or
not).

• A typical data matrix with binary or dummy variables is shown in Table
1.
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Table 1: Partial listing of data used to analyze individual wage determination
person wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1
... ... ... ... ... ...

525 11.56 16 5 0 1

526 3.50 14 5 1 0

Here,

• wage is hourly wage

• educ is years of education

• exper is years of experience

• female and married are as indicated above

4



Models with a Single Dummy Independent Variable

• Consider the case with only a single dummy independent variable, which
we just add as an independent variable in the equation.

• For example, consider model

wage = β0 + β1female+ β2educ+ u, (1)

where

– wage is hourly wage,
– female = 1 for females and female = 0 for males,
– educ is years of education.

• Interpretation of β1: The difference in expected hourly wage between
females and males, given the same amount of education (and holding
the factors in u likewise fixed).

• For example, economically, β1 < 0 may suggest some form of
discrimination against women, since, for the same level of other factors,
they earn less than men on average.
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• That is,

β1 = E(wage|female = 1, educ)− E(wage|female = 0, educ)

= E(wage|female, educ)− E(wage|male, educ).

• Should we have a dummy variable for males, too?

• No.

• In model 1, there are gender–specific intercepts of the regression line:

– The intercept for males is β0.
– The intercept for females is β0 + β1.

• Estimating Equation (1), we get1

ŵage = 0.6228
(0.6725)

− 2.2734
(0.2790)

female+ 0.5065
(0.0504)

educ (2)

n = 526, R2 = 0.2588.
1The data are from 1976.
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• According to this equation, if we take a woman and a man with the
same levels of education, the woman earns, on average, $ 2.3 less per
hour than the man.
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• How would we test for “wage discrimination”?

• Answer: We use the usual t–statistic.

• Regarding the statistical theory, nothing changes when some of the
independent variables are dummy variables.

• For example, in Equation (2), the t–statistic of β̂1 is

tβ̂1
=

−2.2734

0.2790
= −8.1470.

• In model (1), males is the base group or benchmark group: the group
against which comparisons are made.
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• If we would have specified

wage = β⋆
0 + β⋆

1male+ β2educ+ u,

then β̂⋆
0 would have been the estimated intercept for women and β̂⋆

0 + β̂⋆
1

would have been the estimated intercept for men, with

β̂⋆
0 = β̂0 + β̂1, β̂⋆

1 = −β̂1.

• Clearly we could also drop the overall intercept and estimate the model

wage = δ1male+ δ2female+ β3educ+ u,

but then testing for gender–specific effects would require testing for
significance of the difference δ1 − δ2, which is more difficult.

• The methodology does not change if further independent variables are
added.
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• For example, we may extend (1) by controlling for additional variables,
e.g.,

wage = β0 + β1female+ β2educ+ β3exper + β4tenure+ u, (3)

where

– exper is years of potential experience,
– tenure is years with current employer.

• Upon estimating, we get

ŵage = −1.5679
(0.7246)

− 1.8109
(0.2648)

female+ 0.5715
(0.0493)

educ (4)

+ 0.0254
(0.0116)

exper+ 0.1410
(0.0212)

tenure

n = 526, R2 = 0.3635.

• Now the coefficient on female measures the average difference in hourly
wage between a woman and a man, given the same levels of education,
experience, and tenure.
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• The differential of $ 1.81 is then due to gender or gender–related factors
that have not been controlled for.

• Note that, in (4), the magnitude of β̂1 is somewhat smaller than in (2).

• This is due to the fact that in (2), we did not control for exper and tenure,
and these are negatively correlated with female (tenure in particular),
i.e., they are lower on average for women.

• Thus, as we estimate β3 and β4 to be positive, we expect β̂1 to be
negatively biased in (1).
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When the Dependent Variable is in Logarithmic Form

• Equation (3) becomes

log(wage) = β0+ β1female+ β2educ+ β3exper+ β4tenure+ u, (5)

and we get estimates

̂log(wage) = 0.5013
(0.1019)

− 0.3011
(0.0372)

female+ 0.0875
(0.0069)

educ (6)

+ 0.0046
(0.0016)

exper+ 0.0174
(0.0030)

tenure

n = 526, R2 = 0.3923.

• Using our earlier approximation, the coefficient of female would imply
that, for the same levels of educ, exper, and tenure, women earn, on
average, 30.1% less than men.

• However, the approximation 100∆ log y ≈ %∆y becomes less accurate
as the percentage change increases, and in such situations an exact
calculation may be desirable.

13



• Equation (5) implies

̂log(wageF )− ̂log(wageM) = −0.297

̂log(wageF/wageM) = −0.297

ŵageF
ŵageM

− 1 =
ŵageF − ŵageM

ŵageM

= exp{β̂1} − 1

= exp{−0.297} − 1 = −0.26

so our estimate of the percentage wage differential is

100× (exp{β̂1} − 1)% = 26%. (7)

• If β̂1 is rather small in magnitude, we again get the approximation

exp{β̂1} − 1 =

(
1 + β̂1 +

β̂2
1

2
+ · · ·

)
− 1 ≈ β̂1. (8)
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• But note that exp{β̂1} − 1 is a biased estimator of exp{β1} − 1.

• For x ∼ N(µ, σ2), we have

E(ex) = exp

(
µ+

σ2

2

)
,

and since β̂1 is asymptotically normal, a closer approximation is

100×

[
exp

(
β̂1 −

σ̂2
β̂1

2

)
− 1

]
,

which is still not unbiased since σ̂2
β̂1

is estimated.2

2For detailed analysis and development of an unbiased (and efficient) estimator, see Kees Jan van
Garderen and Chandra Shah (2002): Exact interpretation of dummy variables in semilogarithmic equations,
Econometrics Journal, 5, 149–159.

15



Using Dummy Variables for Multiple Categories

• We can use several dummy independent variables in the same equation.

• Let us add the dummy variable married as well as quadratic terms of
exper and tenure to model (5).

• This gives

̂log(wage) = 0.4178
(0.0989)

− 0.2902
(0.0361)

female+ 0.0529
(0.0408)

married (9)

+ 0.0792
(0.0068)

educ+ 0.0270
(0.0053)

exper− 0.0005
(0.0001)

exper2

+ 0.0313
(0.0068)

tenure− 0.0006
(0.0002)

tenure2

n = 526, R2 = 0.4426.

• The coefficient on married gives the (approximate) proportional
differential in wages between those who are and those who are not
married, holding gender, education, experience, and tenure fixed.

16



• Thus, the “marriage premium” appears to be positive, but its t–statistic

tmarried =
0.0529

0.0408
= 1.2985,

which is not significant.

• However, this may be due to the fact that the marriage premium in this
specification is assumed to be the same for women and men.

• This assumption can be relaxed by allowing wage differences among four
groups: married women, single women, married men, and single men.
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• As a base group, single men are chosen.

• This gives rise to the model

̂log(wage) = 0.3214
(0.1000)

+ 0.2127
(0.0554)

marrmale− 0.1983
(0.0578)

marrfem

− 0.1104
(0.0557)

singfem+ 0.0789
(0.0067)

educ (10)

+ 0.0268
(0.0052)

exper− 0.0005
(0.0001)

exper2

+ 0.0291
(0.0068)

tenure− 0.0005
(0.0002)

tenure2

n = 526, R2 = 0.4609.

• As the base group are single males, married men, for example, are
estimated to earn (approximately) 21.3% more than single men, holding
education, experience, and tenure fixed.

• A married woman, on the other hand, earns a predicted 19.8% less than
a single man with the same level of the other variables.
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• If we are interested in the wage differential between single and married
women, we would calculate

−0.1104− (−0.1983) = 0.0879. (11)

• For testing the significance of this quantity, however, it is easier to
reestimate the model with marrfem as the base group, which results in

̂log(wage) = 0.1231
(0.1058)

+ 0.4109
(0.0458)

marrmale+ 0.1983
(0.0578)

singmale

+ 0.0879
(0.0523)

singfem+ 0.0789
(0.0067)

educ (12)

+ 0.0268
(0.0052)

exper− 0.0005
(0.0001)

exper2

+ 0.0291
(0.0068)

tenure− 0.0005
(0.0002)

tenure2

n = 526, R2 = 0.4609.
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• This gives the standard error and t–statistic of (11) as 0.05239 and

tsingfem =
0.0879

0.0523
= 1.6795,

with a p–value (two–sided and relying on asymptotic normality) of 0.0932,
so we would reject at the 10% level the null that there are no differences,
on average, between married and single women.
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• As in the previous example, if we have different intercepts for g groups
or categories, we include g − 1 dummy variables in the model plus an
intercept.

• Then the overall intercept is the intercept for the base group,

• and the dummy variable coefficient for a particular group represents the
estimated difference in intercept between that group and the base group.
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• An alternative way to estimate the previous model with multiple
categories is by means of using interactions.

• For example, we can estimate

̂logwage = 0.3214
(0.1000)

− 0.1104
(0.0557)

female+ 0.2127
(0.0554)

married (13)

− 0.3006
(0.0718)

female ·married+ · · ·

• In this specification, the base group is again single men, which is obtained
by setting female = married = 0.

• The previous parametrization (10) is more convenient when the goal is
to test wage differentials between the base group and any other group.

• Equation (13) can be used to directly test whether the gender differential
does depend on martial status (or, equivalently, if marriage premium
does not depend on gender).
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• That is, if the coefficient of female ·married is zero in (13), then the
difference between married and unmarried women is the same as that
between married and unmarried men.

• This also implies that the difference between married men and married
women is the same as that between unmarried men and unmarried
women.

• For example, in

log(wage) = β0+β1female+β2married+β3female ·married+ · · · ,

the intercepts are

βmarrfem = β0 + β1 + β2 + β3,

βsingfem = β0 + β1,

βmarrmale = β0 + β2,

βsingmale = β0.
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• β3 = 0 then means βmarrfem−βmarrmale = β1 = βsingfem−βsingmale.

• The estimate in (13) shows, however, that this hypothesis can be rejected.
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Incorporating Ordinal Information by Using Dummy
Variables

• Suppose we want to estimate the effect of education on wage.

• We just observe the highest level of education attained instead of years
of education,3 namely,

– High School (HS)
– Bachelor (B)
– Master (M)
– Ph.D. (P).

• We could define a variable educ that is 0 for the first group (HS), 1 for
the second group (B), 2 for the third group (M), and 3 for the fourth
group (P), i.e.,

wage = β0 + β1educ+ other variables+ u. (14)

3One could argue that the highest level of education attained is more appropriate than using years of
education.

25



• However, this is unsatisfactory since it assumes that the (expected)
increase in wage at each “threshold” is the same.

• That is, β1 in (14) measures the (expected) difference between a person
with a Ph.D. and a Master and between a person with a Bachelor and a
High School degree.
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• A more flexible model would be to use binary (dummy) variables for each
level at education.

• Thus, we would write

wage = β0 + βBB + βMM + βPP + · · ·+ u,

and thus have

E(wage|HS, . . .) = β0 + · · ·
E(wage|B, . . .) = β0 + βB + · · ·
E(wage|M, . . .) = β0 + βM + · · ·
E(wage|P, . . .) = β0 + βP + · · ·
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Allowing for Different Slopes

• The previous examples showed how to use dummy variables to allow for
different intercepts for any number of groups in a multiple regression
model.

• We can also allow for differences in slopes by considering interactions
of dummy variables with other explanatory variables.

• For example, in the wage example, we may wish to test whether the
return to education is gender–specific.

• If there is only gender and education in the model, we may write

log(wage) = β0 + β1female+ (β2 + β3female)educ+ u. (15)

• The intercept for males is β0, and the slope on education for males is β2.

• For females, the numbers are β0 + β1 and β2 + β3, respectively.
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• Testing whether the return to education is the same for men and women
amounts to testing

H0 : β3 = 0

in (15).

• Likewise, testing whether expected wages are the same for men and
women with the same levels of education requires testing

H0 : β1 = β3 = 0,

using an F test.
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Testing Differences in Regression Functions

• Suppose we want to test whether two populations have the same
regression function.

• In the wage example, this amounts to testing

H0 : β1 = β3 = β5 = β7 = β9 = β11 = 0 (16)

in

log(wage) = β0 + β1female+ β2educ+ β3educ · female+ β4exper

+β5exper · female+ β6exper
2 + β7exper

2 · female

+β8tenure+ β9tenure · female+ β10tenure
2

+β11tenure
2 · female. (17)
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• In general, suppose we have two groups, g = 1 and g = 2.

• Write the model as

y = β0,g + β1,gx1 + · · ·+ βk,gxk + u, g = 1, 2.

• The hypothesis
H0 : βj,1 = βj,2, j = 0, . . . , k,

imposes k + 1 restrictions on the 2(k + 1) parameters of the full model
allowing the intercept and all the slopes to be different.

• The F–statistic (Chow statistic) is therefore

F =
SSRr − SSRur

SSRur
×n− 2(k + 1)

k + 1
=

SSRr − (SSR1 + SSR2)

SSR1 + SSR2
×n− 2(k + 1)

k + 1
,

where SSR1 and SSR2 are the residual sums of squares from group–wise
regressions.
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• E.g., in the wage example, estimating equation

log(wage) = β0 + β1educ+ β2exper + β3exper
2 + β4tenure+ β5tenure

2

separately for women (g = 1) and mean (g = 2).

Table 2: Dependent variable: log(wage), n = 526; this has the same effects

for women and men
variable coefficient std. error t–stat. p–value

const 0.2016 0.1015 1.9865 0.0470

educ 0.0845 0.0072 11.8030 0.0000

exper 0.0293 0.0053 5.5405 0.0000

exper2 −0.0006 0.0001 −5.1890 0.0000

tenure 0.0371 0.0072 5.1251 0.0000

tenure2 −0.0006 0.0002 −2.4677 0.0136

R2 = 0.3669, SSR =
∑

i û
2
i = 93.9113
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Table 3: Dependent variable: log(wage), n = 252; estimates for women
variable coefficient std. error t–stat. p–value

const 0.3230 0.1399 2.3083 0.0210

educ 0.0726 0.0104 7.0018 0.0000

exper 0.0173 0.0067 2.5812 0.0098

exper2 −0.0004 0.0001 −2.5293 0.0114

tenure 0.0392 0.0117 3.3492 0.0008

tenure2 −0.0014 0.0005 −2.8013 0.0051

R2 = 0.2596, SSR = 36.6751
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Table 4: Dependent variable: log(wage), n = 274; estimates for men
variable coefficient std. error t–stat. p–value

const 0.2148 0.1319 1.6286 0.1034

educ 0.0868 0.0089 9.6998 0.0000

exper 0.0404 0.0072 5.6027 0.0000

exper2 −0.0008 0.0002 −4.8640 0.0000

tenure 0.0325 0.0090 3.6278 0.0003

tenure2 −0.0006 0.0003 −1.9448 0.0518

R2 = 0.4462, SSR = 43.2453

35



Table 5: Dependent variable: log(wage), n = 526; gender–specific intercept

and slopes
variable coefficient std. error t–stat. p–value

const 0.2148 0.1295 1.6591 0.0971

female 0.1082 0.1928 0.5612 0.5746

educ 0.0868 0.0088 9.8814 0.0000

female · educ −0.0142 0.0138 −1.0337 0.3013

exper 0.0404 0.0071 5.7076 0.0000

female · exper −0.0231 0.0099 −2.3402 0.0193

exper2 −0.0008 0.0002 −4.9551 0.0000

female · exper2 0.0004 0.0002 1.7939 0.0728

tenure 0.0325 0.0088 3.6957 0.0002

female · tenure 0.0067 0.0148 0.4514 0.6517

tenure2 −0.0006 0.0003 −1.9812 0.0476

female · tenure2 −0.0008 0.0006 −1.4428 0.1491

R2 = 0.4612, SSR = 79.9204
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• Note that the parameter estimates are the same in Tables 3 and 4 and
in Table 5.

• The standard errors differ somewhat due to the homoskedasticity
assumption implicitly imposed in the joint model in Table 5.

• In our example, the F–statistic is therefore

F =
93.9113− (43.2453 + 36.6751)

43.2453 + 36.6751
× 526− 2(5 + 1)

5 + 1

=
93.9113− 79.9204

79.9204
× 514

6
= 14.9968,

which is significant at the 5% level (and indeed on any reasonable level).

• However, instead of allowing for no differences between the groups under
H0, it may be more interesting to allow for a group–specific intercept
and then test for group–specific slopes.
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• If we do so, the sum of squared residuals under the null is reduced to
SSR = 82.9506, so the F statistic

F =
82.9506− (43.2453 + 36.6751)

43.2453 + 36.6751
× 526− 2× 6

5

=
82.9506− 79.9204

79.9204
× 514

5
= 3.8977.
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Table 6: 95% Quantiles of the F distribution (= 5% critical values) (ν1

numerator degrees of freedom; ν2 denominator degrees of freedom)
ν2/ν1 2 3 4 5 6 7 8 9 10

10 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782

15 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437

20 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 2.3479

25 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 2.2365

30 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646

35 3.2674 2.8742 2.6415 2.4851 2.3718 2.2852 2.2167 2.1608 2.1143

40 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 2.0772

45 3.2043 2.8115 2.5787 2.4221 2.3083 2.2212 2.1521 2.0958 2.0487

50 3.1826 2.7900 2.5572 2.4004 2.2864 2.1992 2.1299 2.0734 2.0261

60 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401 1.9926

70 3.1277 2.7355 2.5027 2.3456 2.2312 2.1435 2.0737 2.0166 1.9689

80 3.1108 2.7188 2.4859 2.3287 2.2142 2.1263 2.0564 1.9991 1.9512

90 3.0977 2.7058 2.4729 2.3157 2.2011 2.1131 2.0430 1.9856 1.9376

100 3.0873 2.6955 2.4626 2.3053 2.1906 2.1025 2.0323 1.9748 1.9267

∞ 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799 1.8307
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The Linear Probability Model (LPM)
• Now suppose that the dependent variable y is a binary variable that
takes on only the two values zero and one.

• How can we then interpret the model

y = β0 + β1x1 + · · ·+ βkxk + u? (18)

• If y is either zero or one, then, if xj changes, y either does not change
or changes from zero to one or vice versa, and βj cannot be interpreted
as the change in y given a unit increase in xj.

• To give a meaning to (18), we may appeal to assumption

E(u|x1, . . . , xk︸ ︷︷ ︸
=x

) = 0, (19)

so that

E(y|x) = β0 +

k∑
j=1

βjxj. (20)
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• If y takes on only the values zero or one, then

p(x) := P(y = 1|x) = E(y|x) = β0 +

k∑
j=1

βjxj, (21)

which says that the conditional probability of y = 1 (response
probability) is a linear function of the independent variables x1, . . . , xk.

• In the linear probability model (LPM), βj measures the change in the
probability of y = 1 when xj changes, holding other factors fixed,

∆P(y = 1|x) = βj∆xj. (22)

• Drawback 1: We may get probabilities larger than unity or smaller than
zero.
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• For example, consider a model for the probability of labor market
participation of married women (1975), measured by variable inlf ,
which is one if the woman works for a wage outside the home.4

• The fitted model is

înlf = 0.5855
(0.1542)

− 0.0034
(0.0014)

nwifeinc+ 0.0380
(0.0074)

educ+ 0.0395
(0.0057)

exper

− 0.0006
(0.0002)

exper2− 0.0161
(0.0025)

age− 0.2618
(0.0335)

kidslt6+ 0.0130
(0.0132)

kidsge6

n = 753,

where

– nwifeinc is a measure of other sources of income (e.g., husband’s
earnings)

– kidslt6 is number of kids under 6 years
– kidsge6 is number of kids 6–18.

4Cf. Wooldridge p. 247.
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• For example, we would interpret this equation in the sense that,
everything else being fixed, another 5 years of education increase the
probability of being in the labor force (i.e., inlf = 1) by 5×0.038 = 0.19.

43



0 100 200 300 400 500 600 700 800
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
predicted "probabilities" and observed values of inlf

 

 

predicted
observed

44



• We observe 16 (17) cases where the implied probability is actually less
than zero (greater than unity), with minimum and maximum given by
–0.3451 and 1.1272, respectively.

• Drawback 2: There is heteroskedasticity, since

Var(y|x) = E(u2|x) = p(x)(1− p(x)).

• With probability p(x), y will be one and u will be 1− p(x).

• With probability 1− p(x), y will be zero and u will be −p(x).

• Thus,

E(u2|x) = p(x)(1− p(x))2 + (1− p(x))p(x)2

= p(x)(1− p(x))[1− p(x) + p(x)]

= p(x)(1− p(x)).
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