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Introduction and Motivation for Asymptotic Analysis

• We have seen that, under the Gauß–Markov Assumptions, the OLS
estimator is unbiased and efficient (BLUE), with covariance matrix

Cov(β̂) = σ2(X ′X)−1.

• Moreover, hypothesis tests (t and F tests) have been developed under
the assumption of normally distributed errors.

• However, in many situations, these assumptions will be unrealistic:

– For many types of data (e.g., time series data), the random sampling
assumption and thus perhaps strong exogeneity (E(ui|X) = 0) will be
violated, and OLS may be biased.

– The assumption of homoskedasticity is unrealistic even in many cross–
sectional situations, so our simple formulas for the variances are no
longer valid.
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– There is also nothing that guarantees normally distributed errors. In
fact, economic data often show pronounced deviations from the normal
distribution.

– If errors are not normally distributed, then the OLS estimator will
likewise not be normally distributed, which in turn implies that the t
and F statistics will not have t and F distributions, respectively.

• Obtaining the exact distributions of β̂ and the test statistics is in general
not feasible if the classical assumptions do not hold.

• Asymptotic or large sample theory allows to derive approximate properties
of estimators by assuming that the sample size n “is large”.

• Use of estimators and test statistics may then be justified by referring to
favorable large sample properties.
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Convergence in Probability and Consistency

•

• We consider a sequence of random variables θn indexed by n, n ∈ N (in
our applications, n is the sample size).

• Sequence θn is said to converge to a constant θ in probability if

lim
n→∞

Pr(|θn − θ| ≥ ϵ) = 0 for any ϵ > 0, (1)

or equivalently

lim
n→∞

Pr(|θn − θ| < ϵ) = 1 for any ϵ > 0. (2)

• (1) and (2) essentially state that, for large n, the probability is high that
θn will be close to θ.
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• Convergence in probability is also denoted as

θn
p→ θ,

or
plimn→∞θn = θ,

where “plim” is short for “probability limit”.

• Now suppose that θ is a population parameter and θ̂n is a sequence of
estimators of θ.

• We say that θ̂n is a consistent estimator of θ if

θ̂n
p→ θ. (3)

• That is, via increasing the sample size, θ̂n can be made arbitrarily close
to θ with arbitrarily high probability.

• As n increases, the sampling distribution of θ̂n becomes more
concentrated about θ, i.e., θ̂n is less likely to be very far from θ.
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• It turns out that a sufficient condition for consistency of an unbiased
estimator is that its variance converges to zero as n → ∞.

• To see this, recall Tschebyschev’s inequality: For random variable x with
density f(x), a function g(x) ≥ 0, and a constant a > 0,

E(g(x)) =

∫ ∞

−∞
g(x)f(x)dx

=

∫
g(x)<a

g(x)f(x)dx+

∫
g(x)≥a

g(x)f(x)dx

≥
∫
g(x)≥a

g(x)f(x)dx

≥ a

∫
g(x)≥a

f(x)dx = aPr(g(x) ≥ a).

• That is

Pr(g(x) ≥ a) ≤ E(g(x))

a
. (4)

5



• Now put g(x) = (x− µx)
2, where µx = E(x), then

E(g(x)) = E((x− µx)
2) = Var(x) =: σ2

x,

and, for all ϵ > 0,

Pr((x− µx)
2 ≥ ϵ2) = Pr(|x− µx| ≥ ϵ) ≤ σ2

x

ϵ2
. (5)

• Relation (5) can be used to derive a (weak) law of large numbers (LLN):

• Let x1, . . . , xn be independently and identically distributed with mean
E(xi) = µx and variance σ2 < ∞. Then

1

n

n∑
i=1

xi = xn
p→ µx. (6)
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• This follows from (5),

E(xn) = E

(
1

n

n∑
i=1

xi

)
=

1

n

∑
i

E(xi) = µx,

and

Var(xn) = Var

(
1

n

n∑
i=1

xi

)

=
1

n2

∑
i

Var(xi) +
1

n2

∑
i

∑
j ̸=i

Cov(xi, xj)︸ ︷︷ ︸
=0

=
1

n2

∑
i

Var(xi)︸ ︷︷ ︸
=σ2

=
σ2

n
.

• That is, the variance of the sample average shrinks to zero as the sample
size increases.
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Properties of plim and consistency of OLS

• To investigate the properties of the OLS estimator, the following
properties of the probability limit are useful:

• If xn and yn are two sequences of random variables satisfying

xn
p→ x, and yn

p→ y, (7)

then
xn + yn

p→ x+ y, (8)

xnyn
p→ xy (9)

xn

yn

p→ x

y
provided y ̸= 0. (10)

• We want to show that the OLS estimator is consistent, i.e.,

β̂j
p→ βj, (11)

where for simplicity we abstain from explicitly indexing β̂j by n.
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• Let us consider the simple linear model

y = β0 + β1x+ u.

• Instead of the random sampling assumption, which implies strong
exogeneity:

E(ui|X) = 0, (12)

we only need the weaker assumption that xi and ui are uncorrelated in
the population,

Cov(xi, ui) = E(xiui) = 0. (13)

• Note that strong exogeneity of the regressors, i.e.,

E(ui|X) = 0, (14)

implies uncorrelatedness, i.e., (13).

• The converse is not true, however, i.e,

Cov(xi, ui) = 0 ; E(ui|X) = 0. (15)

9



• Thus, if only (13) is assumed, OLS is biased in general but consistent.

• To see consistency of the slope coefficient, we write

β̂1 = β1 +
1
n

∑
i(xi − x)ui

1
n

∑
i(xi − x)2

. (16)

• The numerator and denominator of (16) are the sample covariance
between x and u and the sample variance of x, respectively.

• By invoking the law of large numbers, it turns out that

1

n

∑
i

(xi − x)ui
p→ Cov(x, u) = 0

1

n

∑
i

(xi − x)2
p→ Var(x). (17)
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• Thus, by (8) and (10),

plimn→∞β̂1 = β1 +
Cov(x, u)

Var(x)
= β1 +

0

Var(x)
= β1. (18)

• Consistency can also be established for the OLS parameter vector in the
multivariate model.

• The condition for this to be the case is a generalization of (13), namely

Cov(xi1, ui) = Cov(xi2, ui) = · · · = Cov(xik, ui) = 0.
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OLS is inconsistent when Cov(xj, u) ̸= 0

• We have seen that OLS is biased in case there is correlation between the
independent variables and the error term (e.g., omitted variable bias).

• It is important to note that this bias is not a small sample–phenomenon,
i.e., it does not disappear as the sample size grows.

• For example, in the simple linear regression model, y = β0+β1x+u, we
have

β̂1 = β1 +
n−1

∑
i(xi − x̄)ui

n−1
∑

i(xi − x̄)2
= β1 +

sxu
s2x

.

• As the sample size grows, by the law of large numbers,

plimn→∞sxu = Cov(x, u), plimn→∞s2x = Var(x),

so the asymptotic bias is

plimn→∞β̂1 − β1 =
Cov(x, u)

Var(x)
.
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• To illustrate further, consider model

y = β0 + β1x1 + β2x2 + u,

where u satisfies the Gauß–Markov assumptions.

• If we estimate model
y = β0 + β1x1 + ũ

instead, we have
ũ = u+ β2x2,

and

Cov(x1, ũ) = Cov{x1, (u+ β2x2)}
= Cov(x1, u)︸ ︷︷ ︸

=0

+β2Cov(x1, x2) = β2Cov(x1, x2).
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• Hence, the estimator

β̂1 = β1 +
n−1

∑
i(xi1 − x1)ũi

n−1
∑

i(xi1 − x1)2

has probability limit

β̂1
p→ β1 +

Cov(x1, ũ)

Var(x1)
= β1 + β2

Cov(x1, x2)

Var(x1)
,

and is consistent only if either β2 = 0 or Cov(x1, x2) = 0.

• The asymptotic bias is

plimn→∞β̂1 − β1 = β2δ1,

where

δ1 =
Cov(x1, x2)

Var(x1)
= plimn→∞

sx1,x2

s2x1

,

cf. Equation (39) of Lecture Slides 2.
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• With regard to the direction of the asymptotic bias, the same reasoning
applies as in the previous discussion of the omitted variable bias.
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Asymptotic Normality

• The testing procedures we have considered so far have been developed
under the assumption of normally distributed errors.

• However, we cannot expect this to be true in general.

• Indeed, economic data often show pronounced deviations from the normal
distribution.

• This is an important issue, since if the errors are not normal, then the
OLS estimator will not be normal, which in turn implies that the t and
F statistics will not follow t and F distributions, respectively.
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• We have data on arrests during 1986 (and further variables) for n = 2725
men born in either 1960 or 1961 in California.1

• Each man in the sample was arrested at least once prior to 1986.

• A linear model explaining arrests is

narr86 = β0 + β1 · pcnv + β2 · avgsen+ β3 · tottime

+β4 · ptime86 + β5 · qemp86 + u,

where

– narr86 is the number of times a man was arrested
– pcnv is the proportion of prior arrests leading to conviction
– avgsen is average sentence served from past convictions
– tottime is total time the man has spent in prison prior to 1986
– ptime86 is months spent in prison in 1986
– qemp86 is number of quarters in 1986 during which the man was

(legally) employed
1Cf. Example 3.5 of Wooldridge.
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• As a rough check of normality, we can look at a plot of the regression
residuals,

û = y −Xβ̂ = y −X(X ′X)−1X ′y

= Xβ + u−X(X ′X)−1X ′(Xβ + u)

= (I −X(X ′X)−1X ′)u

= Mu,

where M = I −X(X ′X)−1X ′, M2 = M (M is idempotent).

• Hence normality of u implies that û is also normal with mean zero and
covariance matrix σ2M .

• Hence, quantities

ǔi =
ûi√
mii

, i = 1, . . . , n, (19)

where mii is the ith diagonal element of M , should have an identical
normal distribution.2
2Although they are not iid even if the original errors are iid. However, since (X′X)−1 n→∞−→ 0, we

have M
n→∞−→ I, so that, asymptotically, u and û have the same distribution.
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Convergence in distribution and asymptotic normality

• We consider a sequence of random variables xn with an associated
sequence of cumulative distribution functions (cdf) Fn,

Fn(y) = Pr(xn ≤ y). (20)

• If x is a random variable with cdf F , then we say that xn converges in
distribution to x, denoted as

xn
d→ x, or xn

d→ F, (21)

if
lim
n→∞

Fn(y) = F (y) (22)

at all points y where F is continuous.

• The practical usefulness of the concept of convergence in distribution
lies in establishing an approximation to the true distribution (for n “large
enough”) when the true distribution is unknown or intractable.
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• One of the most important examples of convergence in distribution are
central limit theorems (CLT).
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Central Limit Theorem

• We have seen that the distribution of the sample mean xn depends on
n.

• In particular, its variance is σ2/n and shrinks to zero as n → ∞, i.e., the
limiting distribution has all its mass concentrated in one point.

• This is clearly not useful as an approximative distribution of xn for large
n.

• Obviously, we need to standardize xn in order to “fix” its variance.

• Recall the general rule for random variable x and constant c,

Var(cx) = c2Var(x). (23)
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• Then since

Var
(√

nxn

)
= nVar (xn) = n(σ2/n) = σ2, (24)

we study the behavior of the standardized variable

√
n
xn − µ

σ
=

xn − µ

σ/
√
n
. (25)

• The classical central limit theorem (CLT) is as follows:

• Let x1, . . . , xn be independently and identically distributed with E(xi) =
µ and var(xi) = σ2 < ∞. Then

√
n
xn − µ

σ
=

1√
n

n∑
i=1

xi − µ

σ

d→ N(0, 1), (26)

or equivalently √
n(xn − µ)

d→ N(0, σ2). (27)
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• This is a remarkable result as it states that the mean of any long sequence
of iid variables is approximately normally distributed, no matter what
their distribution (provided the variance is finite).

• When applying this result, we treat xn as approximately normal with
mean µ and variance σ2/n, written as

xn
a∼ N(µ, σ2/n), (28)

where “
a∼” stands for “approximately in large samples”.
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CLT illustration

• As an example for the CLT, we consider a uniform distribution over the
interval [0, 1], i.e., a random variable x with density function

f(x) =

{
1 x ∈ [0, 1]

0 otherwise.
(29)

• We generate random samples of different sample sizes n.

• For each n, 25000 samples are generated, and for each sample, quantity

√
n
xn − µ

σ
(30)

is calculated (with µ = 0.5 and σ = 1/
√
12).

• Then we can plot histograms of (30) for each n and compare with a
normal density curve, see next slide.
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• The limiting distribution of
√
n(xn − µ) given by the CLT does not

depend on the distribution of the xis.

• The sample size required for the normal approximation to be adequate,
however, does.

• In particular, the more this distribution deviates from the normal
distribution, the larger the sample has to be.

• This can be illustrated by means of the binomial distribution.

• In particular, define iid Bernoulli random variables xi, i = 1, . . . , n, such
that

xi =

{
1 with probability p

0 with probability 1− p.
(31)

• Then Sn =
∑n

i=1 xi has a binomial distribution with

E(Sn) = np, Var(Sn) = npq, q = 1− p.
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• The first CLT was provided by De Moivre in 1738 for the binomial
distribution, i.e.,

Sn
a∼ Normal(np, npq). (32)

• For p = 0.5 (i.e., equal probability of 0 and 1), the probability mass
function is symmetric.

• Thus is is close to the normal distribution along this dimension.

• Then the quality of approximation via the normal density with mean np
and variance npq, i.e.,

Pr(Sn = s) =

(
n

s

)
ps(1− p)n−s ≈ 1√

2πnpq
exp

{
−(s− np)2

2npq

}
(33)

appears to be reasonable even for relatively small n.

29



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

binomial probability mass function for n = 10 and p = 0.5

30



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

binomial probability mass function for n = 10 and p = 0.5, and normal approximation (red)

31



• It’s a bit different if p is far from 0.5.

• Then the probability mass function is highly asymmetric for small sample
sizes (i.e., very “nonnormal”)

• We need a larger sample size for the approximation to be adequate.
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Asymptotic normality of OLS

• Asymptotic normality can also be established for the OLS estimator
under different sets of assumptions.

• We first consider the simple linear model.

• Slutzky’s Theorem (next slide) is useful in outlining the asymptotic
normality of the ordinary least squares estimator.
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Slutzky’s Theorem

• If xn
d→ x, an

p→ a, bn
p→ b, then

an + bnxn
d→ a+ bx. (34)

• If xn
d→ x and bn

p→ 0, then

bnxn
p→ 0. (35)

• For example, from (34) it follows that if

xn
d→ N(0, σ2), bn

p→ b, an
p→ a, (36)

then
an + bnxn

d→ a+ bN(0, σ2)
d
= N(a, b2σ2), (37)

since in general, for constants a and b, E(a + bx) = a + bE(x), and
Var(bx) = b2Var(x).
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Asymptotic normality of OLS

• Write β̂1 as

β̂1 = β1 +
1
n

∑
i(xi − x)ui

1
n

∑
i(xi − x)2

. (38)

Hence,

√
n(β̂1 − β1) =

1√
n

∑
i(xi − x)ui

1
n

∑
i(xi − x)2

. (39)

• Let µx = E(x), and write the numerator in (39) as

1√
n

∑
i

(xi − x)ui =
1√
n

∑
i

(xi − µx + µx − x)ui (40)

=
1√
n

∑
i

(xi − µx)ui + (µx − x)
1√
n

∑
i

ui. (41)
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• In the second term in (41), we have, by the LLN and the CLT, respectively,

µx − x
p→ 0,

1√
n

∑
i

ui
d→ N(0, σ2), (42)

where σ2 = Var(ui).

• Thus, by (35),

(µx − x)
1√
n

∑
i

ui
p→ 0. (43)

• In the first term in (41), under random sampling and zero correlation
between xi and ui, variables (xi−µ)ui are independently and identically
distributed with

E{(xi−µx)ui} = Cov(xi, ui) = 0, Var{(xi−µx)ui} = E{(xi−µx)
2u2

i}.

• Thus,
1√
n

∑
i

(xi − µx)ui
d→ N(0,E{(xi − µx)

2u2
i}). (44)

39



As before (cf. (17)), for the denominator in (39),

1

n

∑
i

(xi − x)2
p→ Var(x). (45)

• Summarizing, (34) then implies

√
n(β̂1 − β1)

d→ N

(
0,

E{(xi − µx)
2u2

i}
Var(x)2

)
. (46)

• Result (46) will be useful in our discussion of heteroskedasticity.

• In case of homoskedasticity, i.e.,

E(u2
i |xi) = σ2, (47)

it can be shown3 that

E{(xi − µx)
2u2

i} = σ2E(xi − µx)
2 = σ2Var(x), (48)

3Via the law of iterated expectations.
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so that the variance in (46) then has the more familiar form4

σ2

Var(x)
. (49)

• However, the more general formula in (39) will be useful later when we
discuss heteroskedasticity.

• Under homoskedasticity, we will then use results (46) along with (49) by

treating β̂1 as

β̂1
a∼ N

(
β1,

σ2

nVar(x)

)
, (50)

where we estimate Var(x) via

V̂ar(x) = n−1
∑
i

(xi − x)2. (51)

4Note that this is the asymptotic variance of
√
n(β̂1 − β1), so that, due to the factor

√
n, the n in

the denominator is missing here.
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Asymptotic normality of OLS

• Asymptotic normality can also be established for the OLS estimator in
the multiple regression model under different sets of assumptions.

• E.g., it will hold under the Gauss–Markov Assumptions.

• Namely, in this case (now assuming homoskedasticity)

√
n(β̂ − β)

d−→ MVN(0, σ2Q−1), (52)

where

Q = plimn→∞
X ′X

n
,

so that we act according to

β̂
a∼ MVN

(
β,

σ2

n
Q−1

)
= MVN

(
β, σ2(nQ)−1

)
, (53)
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where we estimate the asymptotic covariance matrix as

σ̂2(X ′X)−1.

• We also have

tβ̂j
=

β̂j − βj

σ̂β̂j

d→ Normal(0, 1). (54)

• In the present context, (54) and σ̂β̂j
are also referred to as the asymptotic

t statistic and asymptotic standard error, respectively.

• Asymptotic confidence intervals can also be constructed using the
quantiles of the normal distribution

• In summary, for large enough sample sizes, nothing changes from what
we have done before when it comes to hypothesis testing.

• Note that homoskedasticity is still required for the usual t and F
statistics to be valid in large samples.
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• We will later discuss what to do in case of heteroskedasticity.

• Regarding the asymptotic F test, we note that this can also be carried
out by means of an χ2 distribution with q degrees of freedom (q =
number of linear restrictions).

• In particular, as n → ∞,

ν1Fν1,ν2

ν2→∞−→ χ2(ν1). (55)

• For example, take the 95% quantiles of the Fν1,∞ distribution with
ν1 = 2, 3, 4, given by 2.9957, 2.6049, and 2.3719, respectively.

• We compute

2× 2.9957 = 5.9915 (56)

3× 2.6049 = 7.8147 (57)

4× 2.3719 = 9.4877, (58)

which are the respective quantiles of the χ2(ν1) distribution.
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• In this form, the test is known as Wald Test (named after Abraham
Wald).
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Lagrange Multiplier Test

• Based on asymptotic arguments, further methods exist that can be used
for hypothesis testing.

• A popular example with an intuitively appealing form of the test statistic
is the Lagrange multiplier test, or LM test, for exclusion restrictions.

• As it is based on asymptotic arguments, this requires the Gauß–Markov
assumptions, but not Gaussianity of the errors.

• Consider the multiple regression model

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u, (59)

• We want to test, in (59), whether

H0 : βk−q+1 = βk−q+2 = · · · = βk = 0, (60)

i.e., we have q exclusion restrictions.
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• To do the test, we run the restricted regression, i.e., we get estimates

y = β̃0 + β̃1x1 + · · ·+ β̃k−qxk−q + ũ. (61)

• If null hypothesis (60) is correct, variables xk−q+1, xk−q+2, . . . , xk should
approximately be uncorrelated with the residuals of the restricted model,
ũ.

• Thus, we run the regression of ũ on all the independent variables in (59),
that is

ũ = δ0 + δ1x1 + δ2x2 + · · ·+ δkxk + v, (62)

• Finally, we calculate the usual R2 from regression (62), since

nR2 d→ χ2(q), (63)

where q is the number of restrictions imposed by (60).

• χ2(q) denotes a χ2 distribution with q degrees of freedom.
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LM Test Example

• As an example, we consider the data on the number arrests, where
n = 2725.

• Suppose we want to test

H0 : β2 = β3 = 0. (64)

• We thus estimate the equation

narr86 = β0 + β1 · pcnv + β4 · ptime86 + β5 · qemp86 + u, (65)

and obtain its residuals, ũ.
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• Subsequently, we calculate the regression

ũ = δ0 + δ1 · pcnv + δ2 · avgsen+ δ3 · tottime

+δ4 · ptime86 + δ5 · qemp86 + v,

and obtain its R2.

• In this example, the R2 turns out to be 0.0015.

• The LM test statistic is thus

LM = nR2 = 2725× 0.0015 = 4.0707.

• From Table 1, we can infer that the critical value at the 10% level is 4.6,
so we cannot reject H0 at the 10% level.
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• The p–value is

P (χ(2)2 > LM) = 1− Fχ2(2)(LM) = 0.1306, (66)

where Fχ2(2) is the cumulative distribution function (cdf) of the χ2

distribution with two degrees of freedom.

• For purpose of comparison, we shall also consider the F test for (60).

• The F statistic is

F =
SSRr − SSRur

SSRur
× n− k − 1

q
=

R2
ur −R2

r

1−R2
ur

× n− k − 1

q

=
0.0428− 0.0413

1− 0.0428
× 2725

2

= 2.0339,

with p–value 0.1310.
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Table 1: Quantiles of the χ2 distribution (ν denotes degrees of freedom)
ν 0.9 0.95 0.975 0.99

1 2.7055 3.8415 5.0239 6.6349

2 4.6052 5.9915 7.3778 9.2103

3 6.2514 7.8147 9.3484 11.3449

4 7.7794 9.4877 11.1433 13.2767

5 9.2364 11.0705 12.8325 15.0863

6 10.6446 12.5916 14.4494 16.8119

7 12.0170 14.0671 16.0128 18.4753

8 13.3616 15.5073 17.5345 20.0902

9 14.6837 16.9190 19.0228 21.6660

10 15.9872 18.3070 20.4832 23.2093

11 17.2750 19.6751 21.9200 24.7250

12 18.5493 21.0261 23.3367 26.2170

13 19.8119 22.3620 24.7356 27.6882

14 21.0641 23.6848 26.1189 29.1412

15 22.3071 24.9958 27.4884 30.5779
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Table 2: 95% Quantiles of the F distribution (= 5% critical values) (ν1

numerator degrees of freedom; ν2 denominator degrees of freedom)
ν2/ν1 2 3 4 5 6 7 8 9 10

10 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782

15 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437

20 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 2.3479

25 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 2.2365

30 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646

35 3.2674 2.8742 2.6415 2.4851 2.3718 2.2852 2.2167 2.1608 2.1143

40 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 2.0772

45 3.2043 2.8115 2.5787 2.4221 2.3083 2.2212 2.1521 2.0958 2.0487

50 3.1826 2.7900 2.5572 2.4004 2.2864 2.1992 2.1299 2.0734 2.0261

60 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401 1.9926

70 3.1277 2.7355 2.5027 2.3456 2.2312 2.1435 2.0737 2.0166 1.9689

80 3.1108 2.7188 2.4859 2.3287 2.2142 2.1263 2.0564 1.9991 1.9512

90 3.0977 2.7058 2.4729 2.3157 2.2011 2.1131 2.0430 1.9856 1.9376

100 3.0873 2.6955 2.4626 2.3053 2.1906 2.1025 2.0323 1.9748 1.9267

∞ 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799 1.8307
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