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Hypotheses about a Single Linear Combination of the
Parameters

• In applications, we are often interested in testing hypothesis involving
more than just a single population parameter.

• To illustrate, we consider a model to compare returns of education at
junior (community, two–year) colleges and four–year colleges, which will
be referred to as universities.

• The model is1

log(wage) = β0 + β1jc+ β2univ + β3exper + u, (1)

where jc is years attending two–year college, univ is number of years at
four–year college, and exper is month in the workforce. Any combination
of jc and univ is possible.

• The hypothesis of interest is whether one year at a university is worth
more than one year at a junior college.
1See Wooldridge, p. 147.
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• Thus a one–sided alternative appears reasonable,

H0 : β1 = β2, and H1 : β1 < β2. (2)

• We estimate

̂log(wage) =1.4723
(0.0211)

+ 0.0667
(0.0068)

jc+ 0.0769
(0.0023)

univ+ 0.0049
(0.0002)

exper, (3)

where standard errors are given in parentheses.

• In this case, n = 6763, k+1 = 4, so n− k− 1 is very large, and we can
use the critical values implied by the normal distribution.

• Both jc and univ have economically and statistically significant partial
effects on wage.

• The estimated difference is β̂2 − β̂1 = 0.0102, i.e., the return to a year
at a four–year college is about one percentage point higher than that of
a year at a community college.

2



• To test (2), we can consider the test statistic

t =
β̂1 − β̂2

se(β̂1 − β̂2)
, (4)

which has a t distribution with n − k − 1 degrees of freedom (i.e., in
this particular example, essentially a normal distribution), where se is
standard error (estimated standard deviation).

• Now we can use the variance of linear combinations of random variables
to determine se(β̂1 − β̂2) as

se(β̂1 − β̂2) =
√
σ̂2r′(X ′X)−1r

=

√
V̂ar(β̂1) + V̂ar(β̂2)− 2Ĉov(β̂1, β̂2),

where r = [0, 1,−1, 0]′.
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• This gives

se(β̂1 − β̂2) = 0.0069 ⇒ t =
−0.0102

0.0069
= −1.468, (5)

with p–value 0.0711, and hence some weak evidence against H0.

4



More Straightforward Approach for a Single Linear
Combination of the Parameters

• An alternative approach that works for single linear restrictions is as
follows:

• Define a new parameter θ = β1 − β2 and then test

H0 : θ = 0 against H1 : θ < 0. (6)

• Equation (1) becomes, with β1 = θ + β2

log(wage) = β0 + (θ + β2)jc+ β2univ + β3exper + u

= β0 + θjc+ β2(jc+ univ) + β3exper + u

= β0 + θjc+ β2totcoll + β3exper + u, (7)

where totcoll = jc + univ is total years in college.

• This equation can be estimated and a standard test of (6) be performed.
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• Estimation of (7) gives

̂log(wage) =1.4723
(0.0211)

− 0.0102
(0.0069)

jc+ 0.0769
(0.0023)

totcoll+ 0.0049
(0.0002)

exper, (8)

which gives rise to the same conclusion as above.

• Note that β0, β2, and β3 and their standard errors remain unaffected (as
it should be), and the only thing that we could not extract directly from

(1) is the standard error of θ̂.

• The general procedure is

1. Use the linear restriction to solve for one of the original parameters,
and then

2. plug the result into the regression equation and rearrange to get a new
regression involving constructed variables.
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Testing Multiple Linear Restrictions: The F Test

• Suppose we want to test whether a set of independent variables has no
effect on y.

• As an example, consider a model for major league baseball players’
salaries,2

log(salary) = β0+β1years+β2gamesyr+β3bavg+β4hrunsyr+β5rbisyr+u,
(9)

where

– salary = 1993 total salary
– years = years in the league
– gamesyr = average games played per year
– bavg = career batting average
– hrunsyr = home runs per year
– rbisyr = runs batted in per year.

• Variables bavg, hrunsyr, and rbisyr measure the performance of a player.
2Cf. Wooldridge, p. 151.
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• We want to test the hypothesis that, once years in the league and games
per year have been accounted for, performance has no effect on salary.

• That is, we want to test

H0 : β3 = 0, β4 = 0, β5 = 0, (10)

which is a set of multiple restrictions because we are putting more than
one restriction on the parameters of (9).

• Note that the alternative

H1 : (10) is not true. (11)

is valid if at least one of β3, β4, or β5 is not zero.

• We might thus be tempted to test any of the parameters separately, i.e.,
test

H0,j : βj = 0, j = 3, 4, 5, (12)

and reject H0 in (10) at level α if any of the hypotheses in (12) is
rejected at level α.
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• However, the type I error of such a test would be larger than 5%:

• If the null (10) is true, then we would not reject the three tests (12)
with probability 1− α.

• Suppose for simplicity that the tests are statistically independent
(unrealistic, but sufficient to make the point).

• Then the probability that none of the hypothesis is (12) is rejected is

Pr(no H0,j rejected|H0) = Pr(H0,1 not rejected|H0)

× Pr(H0,2 not rejected|H0)× Pr(H0,3 not rejected|H0)

= (1− α)3.

• Thus the overall type I error is 1− (1− α)3.

• E.g., if α = 0.05, then 1− (1− α)3 = 1− 0.953 = 0.14.
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• Using separate t statistics to test a multiple hypothesis can be misleading
also in other respects.

• To illustrate, estimation of model (9) gives

̂log(salary) = 11.19
(0.2888)

+ 0.0689
(0.0121)

years+ 0.0126
(0.0026)

gamesyr (13)

+ 0.0010
(0.0011)

bavg+ 0.0144
(0.0161)

hrunsyr+ 0.0108
(0.0072)

rbisyr,

n = 353, SSR =
∑
i

û2
i = 183.1863, R2 = 0.6278,

where SSR is the sum of squared residuals.

• The t statistics for the performance variables are

tβ̂3
=

0.0010

0.0011
= 0.8868, tβ̂4

=
0.0144

0.0161
= 0.8986, tβ̂5

=
0.0108

0.0072
= 1.5005,

so that none of these is significant at the 5% level.
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• Thus, we might be tempted to conclude that we cannot reject (10) at
the 5% level.

• However, this turns out to be wrong.

• To indicate why, recall the formula

Var(β̂j) =
σ2

ns2xj
(1−R2

j)
,

where R2
j is the coefficient of determination of a regression of xj on the

other independent variables.

• In our example, we have

R2
4 = 0.874, R2

5 = 0.944,

and in particular x4 and x5 are highly correlated (with correlation 0.891),
which makes it difficult to identify the partial effect of each of these
variables.
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• Thus, we need to test whether the variables are jointly significant.
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• The F test can be used to do so.

• The F test can be written in terms of the residuals sum of squares of
the unrestricted model and the restricted model.

• In the restricted model, the restrictions associated with the null
hypothesis have been imposed in the estimation.

• In the case of exclusion restrictions, where several coefficients are set
equal to zero, estimation of the restricted model is rather straightforward
by just excluding the respective variables.

• For example, in our baseball example, we estimate the equation with
only two independent variables, years and gamesyr, to get

̂log(salary) = 11.22
(0.1083)

+ 0.0713
(0.0125)

years+ 0.0202
(0.0013)

gamesyr (14)

n = 353, SSR =
∑
i

û2
i = 198.3115, R2 = 0.5971.
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• Clearly the SSR of the restricted model is larger than the SSR of the
unrestricted model.

• We need a rule to decide whether the difference between the sums of
squares is large enough to be statistically significant.

• To state the general result, suppose that, under H0, there are q
independent linear restrictions on the parameters of the model, which
can be written as

H0 : Rβ = r, (15)

where R is a q × (k + 1) matrix of rank q.

• For example, in the baseball example,

H0 :

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

=R


β0

β1

β2

β3

β4

β5

 =

 0
0
0


︸ ︷︷ ︸

=r

. (16)
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• As another example, we may want to test a hypothesis of the form

H0 : β3 − 2β1 = 1, β2 = 2β1 (17)

about the coefficients of the model

y = β0β1x1 + β2x2 + β3x3 + u, (18)

where then β = (β0, β1, β2, β3)
′, and

R =

[
0 −2 0 1
0 2 −1 0

]
, r =

[
1
0

]
. (19)
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• The F statistic for this null hypothesis is

F =
(SSRr − SSRur)/q

SSRur/(n− k − 1)
=

SSRr − SSRur

SSRur

n− k − 1

q
, (20)

where

– SSRur is the sum of squared residuals from the unrestricted
regression,

– SSRr is the sum of squared residuals from the restricted regression,
– q is the number of restrictions imposed by the restricted model.

• n− k − 1 and q are also referred to as

– q = numerator degrees of freedom
– n− k − 1 = denominator degrees of freedom.

• H0 will be rejected if F is “large”.
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• UnderH0 and the CLM assumptions, the F statistic has an F distribution
with q numerator and n−k−1 denominator degrees of freedom, written
as

F ∼ Fq,n−k−1. (21)
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The F distribution

Table 1: 95% Quantiles of the F distribution (= 5% critical values) (ν1

numerator degrees of freedom; ν2 denominator degrees of freedom)
ν2/ν1 2 3 4 5 6 7 8 9 10

10 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782

15 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437

20 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 2.3479

25 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 2.2365

30 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646

35 3.2674 2.8742 2.6415 2.4851 2.3718 2.2852 2.2167 2.1608 2.1143

40 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 2.0772

45 3.2043 2.8115 2.5787 2.4221 2.3083 2.2212 2.1521 2.0958 2.0487

50 3.1826 2.7900 2.5572 2.4004 2.2864 2.1992 2.1299 2.0734 2.0261

60 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401 1.9926

70 3.1277 2.7355 2.5027 2.3456 2.2312 2.1435 2.0737 2.0166 1.9689

80 3.1108 2.7188 2.4859 2.3287 2.2142 2.1263 2.0564 1.9991 1.9512

90 3.0977 2.7058 2.4729 2.3157 2.2011 2.1131 2.0430 1.9856 1.9376

100 3.0873 2.6955 2.4626 2.3053 2.1906 2.1025 2.0323 1.9748 1.9267

∞ 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799 1.8307
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The F distribution

• For ν1 = 1, the critical values are equal to the squares of a two–sided
t–test with ν2 degrees of freedom.

• This is because the square of a tν random variable has an F1,ν distribution.

• Thus, for a single linear restriction, the F test gives rise to the same
results as a two–sided t test.

• Clearly t tests are more flexible in such situations, as they allow for
one–sided alternatives also.

• Now we return to the baseball problem.

• We have q = 3 and n− k − 1 = 347.

• So the critical values at the 5% and 1% levels are c0.05 = 2.6049 and
c0.01 = 3.782, respectively.
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• The F statistic is given by

F =
SSRr − SSRur

SSRur

n− k − 1

q
=

198.3115− 183.1863

183.1863
× 347

3
= 9.5503.

(22)

• Obviously,
F > c0.01,

so we can reject the null hypothesis that the performance variables have
no effect on salary.

• We can say that x3, x4, x5 are jointly statistically significant.

• As in this example, the F statistic is often useful for testing exclusion of
a group of variables when these variables are highly correlated, and the
partial effects are difficult to identify.
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Calculating the p–value

• Calculating and reporting p–values for F tests may be extra useful since
the critical values, depending on two parameters, are less well–known
than those of the Gaussian.

• In the current context, the p–value is the probability of observing, under
the null, a value at least as large the actually observed value of the F
statistic, i.e.,

p− value = Pr(Fq,n−k−1 ≥ F ), (23)

where Fq,n−k−1 is an F random variable with q and n − k − 1 degrees
of freedom and F is the observed value of the F ratio.
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R2 Form of the F Statistic

• Recall that the coefficient of determination

R2 = 1− SSR

SST
, (24)

where SST =
∑

i(yi − ȳ)2 is total sum of squares.

Thus,

SSRr = SST × (1−R2
r) (25)

SSRur = SST × (1−R2
ur), (26)

and we can write

F =
SSRr − SSRur

SSRur

n− k − 1

q
=

R2
ur −R2

r

1−R2
ur

× n− k − 1

q
,

which is referred to as the R2 form of the F statistic.
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• For the baseball example,

R2
ur −R2

r

1−R2
ur

× n− k − 1

q
=

0.6278− 0.5971

1− 0.6278
× 347

3
= 9.5405,

where the difference to (22) is due to rounding error.

• If the null hypothesis states that

H0 : β1 = β2 = · · · = βk = 0, (27)

then the restricted model is simply

y = β0 + u, β̂0 =
1

n

∑
i

yi = ȳ,
∑
i

û2
i =

∑
i

(yi − ȳ)2,

⇒ R2
r = 0,

and the corresponding F statistic is

F =
R2

1−R2
× n− k − 1

k
. (28)
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• This is referred to as the F statistic for the overall significance of a
regression, since it tests whether any of the independent variables helps
to explain y.
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General Linear Restrictions

• So far we have concentrated on exclusion restrictions, where it is tested
whether a set of variables has no impact.

• More general linear hypothesis can also be tested.

• For example, suppose that, in the baseball example, we are interested in
testing

H0 : β3 = 0, β3 = β4 = 0.01.

• Then we can write the restricted model as

log(salary) = β0 + β1years+ β2gamesyr (29)

+0.01(hrunsyr + rbisyr) + u,

log(salary)− 0.01(hrunsyr + rbisyr)︸ ︷︷ ︸
=ỹ

= β0 + β1years+ β2gamesyr + u,

which can be estimated by regressing the left–hand side on the right–hand
side in the third line in (29).
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• Doing so results in

̂̃y = 11.3906
(0.1043)

+ 0.0696
(0.0120)

years+ 0.0138
(0.0013)

gamesyr (30)

n = 353, SSR =
∑
i

û2
i = 184.0202, R2 = 0.4740.

• We calculate the two forms of the F statistic,

F1 =
184.0202− 183.1863

183.1863
× 347

3
= 0.5265, (31)

and

F2 =
0.6278− 0.4740

1− 0.6278
× 347

3
= 47.7956. (32)

• Now the answers in (31) and (32) are radically different. What has
happened?
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• Obviously, the reason is that the dependent variable ỹ in (30) is not the
same as log(salary).

• So if we estimate the restricted model by substituting our restrictions,
we have to keep in mind that regression output refers to the transformed
data.

• If we calculate the R2 of the restricted regression properly by calculating

R2
r = 1− 184.0202

492.1755︸ ︷︷ ︸
=n×s2

log(salary)

= 0.6261, (33)

we get

F2 =
0.6278− 0.6261

1− 0.6278
× 347

3
= 0.5283. (34)

• Thus, we cannot use the regression output (the reported R2 of the
restricted regression) directly.
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