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Sampling Distribution of the OLS Estimator under
Normality

• Consider the OLS estimator β̂ of β in the model

y = Xβ + u, (1)

i.e.,
β̂ = (X ′X)−1X ′y. (2)

• We know that

E(β̂) = β (3)

Cov(β̂) = σ2(X ′X)−1. (4)

• In order to conduct statistical inference such as hypothesis testing, we
need to be able to make statements about the full sampling distribution
of β̂.

1



The Normality Assumption
• To derive the distributions of relevant test statistics, we add to our earlier

Gauß–Markov Assumptions the assumption of normality:

• Normality assumption: The error u is independent of X and normally
distributed with mean zero and variance σ2, i.e.,

ui ∼ N(0, σ2). (5)

• Given our earlier result that Cov(u) = σ2I, the normality assumption
can also be written as

u ∼ MVN(0, σ2I), (6)

indicating a multivariate normal (MVN) distribution with mean 0 and
covariance matrix σ2I.

• With the assumption of normality added, the linear regression model
under the Gauß–Markov Assumptions is also referred to as the classical
linear model (CLM).
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Implications of the Normality Assumption

• Recall that

β̂ = (X ′X)−1X ′y = (X ′X)−1X ′(Xβ + u)

= β + (X ′X)−1X ′u,

so that β̂ is a linear function of the normally distributed u.

• In general, if x ∼ MVN(µ,Σ), then

Ax + b ∼ MVN(Aµ + b, AΣA′). (7)

• Hence β̂ is likewise normal, i.e.,

β̂|X ∼ MVN(β, σ2(X ′X)−1), (8)

i.e., the OLS estimator β̂ is normally distributed with mean vector β and
covariance matrix σ2(X ′X)−1.
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Implications of the Normality Assumption

• Implications of (8), among others, are as follows:

(1) Each element of β̂, say β̂j, has a univariate normal distribution with
mean βj and a variance given by the corresponding diagonal element of
the covariance matrix σ2(X ′X)−1, i.e.,

β̂j ∼ N(βj, σ
2
bβj

), (9)

where σ2
bβj

denotes the sampling variance of β̂j, and by standardization

we get the standard normal with mean zero and unit variance,

β̂j − βj

σbβj

∼ N(0, 1), (10)

where σbβj
=

√
σ2
bβj

is the standard error of β̂j.
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• For example, in the simple linear regression model, y = β0 + β1x1 + u,

σ2(X ′X)−1 =
σ2

ns2
x1

[
x2

1 −x1

−x1 1

]
,

so

β̂0 ∼ N

(
β0,

σ2x2
1

ns2
x1

)
,

and

β̂1 ∼ N

(
β1,

σ2

ns2
x1

)
.
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• A further implication of (8) is:

(2) All linear combinations of the elements in β̂ are likewise normally
distributed.

• That is, for matrix R, it follows from (7) that

Rβ̂ ∼ MVN
(
Rβ, σ2R(X ′X)−1R′) . (11)

6



Interval Estimation and Confidence Intervals

• The OLS estimator β̂j is a point estimator of βj.

• With probability one, β̂j 6= βj.

• For practical applications, we are also interested in knowing a likely range
of values for the unknown parameter, given the data.

• That is, we want to construct an interval estimator for βj (called a
confidence interval, CI), which a priori has a high probability of
containing the unknown parameter.

• Such an interval also reflects the precision of our point estimate.

• We construct the confidence interval in such a way that it contains the
true parameter value βj with some pre–specified probability (coverage
probability or confidence coefficient) 1− α, where α is the (typically
small) probability of error.

• E.g., if α = 0.05, then the CI will contain βj with probability 0.95.
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• Formal definition: CI1−α is a random interval such that, conditional on
X,

Pr(βj ∈ CI1−α) = 1− α. (12)

• Note that the random element in (12) is CI1−α, βj is a fixed quantity
(the true population parameter).

• We consider a symmetric confidence interval around the estimator β̂j:

CI1−α = [β̂j − c1−α, β̂j + c1−α]. (13)

• We need to determine c1−α such that

Pr(βj ∈ CI1−α) = 1− α. (14)
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• We know that

β̂j ∼ N(βj, σ
2
bβj

), σ2
bβj

= σ2(X ′X)−1
jj , (15)

where (X ′X)−1
jj is the corresponding diagonal element of (X ′X)−1, and

β̂j − βj√
σ2
bβj

∼ N(0, 1). (16)

• Let Z ∼ N(0, 1) (i.e., Z has a standard normal distributon).

• The γ–quantile of the standard normal distribution zγ is defined such
that

Pr(Z ≤ zγ) =
∫ zγ

−∞

e−z2/2dz√
2π

= γ. (17)

• By symmetry around zero,

z1−γ = −zγ. (18)
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• For example, if γ = 0.975, then zγ = 1.96, and so z0.025 = −1.96.

Table 1: Quantiles of the standard normal distribution
γ 0.9 0.95 0.975 0.99 0.995

zγ 1.282 1.645 1.960 2.326 2.576

• Now suppose for the moment that σ2 and hence σ2
bβj

is known.

• Take γ = 1− α/2, and consider the interval

CI =
[
β̂j − z1−α/2 × σbβj

, β̂j + z1−α/2 × σbβj

]
. (19)
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• Then

Pr (βj ∈ CI) = Pr
(
β̂j − z1−α/2 × σbβj

≤ βj ≤ β̂j + z1−α/2 × σbβj

)

= Pr
(
−z1−α/2 × σbβj

≤ βj − β̂j ≤ z1−α/2 × σbβj

)
(20)

= Pr
(
−z1−α/2 × σbβj

≤ β̂j − βj ≤ z1−α/2 × σbβj

)
(21)

= Pr

(
−z1−α/2 ≤

β̂j − βj

σbβj

≤ z1−α/2

)
(22)

= Pr

(
β̂j − βj

σbβj

≤ z1−α/2

)
− Pr

(
β̂j − βj

σbβj

≤ −z1−α/2

)

= Pr

(
β̂j − βj

σbβj

≤ z1−α/2

)

︸ ︷︷ ︸
1−α/2

−Pr

(
β̂j − βj

σbβj

≤ zα/2

)

︸ ︷︷ ︸
=α/2

(23)

= 1− α/2− α/2 = 1− α, (24)

where in (23) −z1−α/2 = zα/2 was used.
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• Since σ2 is not known, it has to be estimated from the data via

σ̂2 =
1

n− k − 1

n∑

i=1

û2
i =

û′û
n− k − 1

. (25)

• However, in this case, quantity

tbβj
=

β̂j − βj

σ̂bβj

, σ̂2
bβj

= σ̂2(X ′X)−1
jj , (26)

is no longer normally distributed.

• It can be shown that (26) has a Student’s t distribution with n− k − 1
degrees of freedom, i.e.,

tbβj
=

β̂j − βj

σ̂bβj

∼ t(n− k − 1). (27)
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• The t distribution has more probability mass in the tails than the normal.

• Hence, the quantiles are larger (in magnitude) than the corresponding
quantiles of the normal distribution, and hence confidence intervals are
wider.

• This reflects the larger uncertainty due to the additional sampling error
embodied in the estimated error term variance.

• For ν →∞, the t distribution approaches the normal distribution, where
ν denotes degrees of freedom.

• Often normal quantiles are used for ν > 30.

• Several quantiles of the t distribution are provided in Table 2.
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Table 2: Quantiles of the t distribution (ν denotes degrees of freedom)
ν 0.9 0.95 0.975 0.99 0.995

1 3.078 6.314 12.706 31.821 63.657

3 1.638 2.353 3.182 4.541 5.841

5 1.476 2.015 2.571 3.365 4.032

10 1.372 1.812 2.228 2.764 3.169

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

25 1.316 1.708 2.060 2.485 2.787

30 1.310 1.697 2.042 2.457 2.750

50 1.299 1.676 2.009 2.403 2.678

100 1.290 1.660 1.984 2.364 2.626

∞ 1.282 1.645 1.960 2.326 2.576

ν = ∞ corresponds to the normal distribution.
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• Let tνγ be the γ–quantile of the t distribution with ν degrees of freedom.

• That is, for T ∼ t(ν),
Pr(T ≤ tνγ) = γ. (28)

• Just as the standard normal distribution, the t distribution is symmetric
around zero, so

tν1−γ = −tνγ. (29)

• Hence, a feasible confidence interval (i.e., with σ2 unknown) with
confidence level 1− α is

CI1−α = [β̂j − tn−k−1
1−α/2 × σ̂bβj

, β̂j + tn−k−1
1−α/2 × σ̂bβj

] (30)

• A rule of thumb for reasonably large sample sizes (so t ≈ normal) is to

calculate a 95% confidence interval for βj as β̂j ± 2× σ̂bβj
.
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Interpretation of Confidence Intervals

• The confidence interval is a function of the data and thus is random.

• Before the sample of data is generated, the probability is 1− α that the
data will be such that CI1−α contains the true value βj.

• Once we have observed the data, we calculate the realization of the
interval for our particular sample of data.

• This realization of CI1−α is no longer random, so it makes no sense to
talk about the probability that the realized interval contains βj.

• The realized interval either contains the true value βj or not; no
probability is involved.
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Hypothesis Testing

• A hypothesis is a statement about one or more unknown population
parameters.

• Based on the data, we want to decide whether the statement is true or
false.

• Typically, we have two competing hypotheses:

– Null hypothesis (H0): The null hypothesis is presumed to be true
until the data strongly suggest otherwise.

– Alternative hypothesis (H1): A hypothesis against which the null is
tested. It is presumed to be true if the data reject the null.

• Usually the case of interest is stated as H1, which can be accepted if the
data provide strong evidence against H0.

• We cannot “accept the null hypothesis”; either the evidence in the data
rejects H0 or “fails to reject H0” (see below for explanation).
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• Consider

wage = β0 + β1 × female + β2 × education + · · ·+ u. (31)

For example, we may test H0 : β1 = 0 (no wage discrimination) against
H1 : β1 < 0 (wage discrimination).

• In hypothesis testing, there are two types of errors one can make:

– Type I error: Rejecting H0 when H0 is true
– The probability of a Type I error is denoted by α and called the

significance level of the test, i.e.,

α = Pr(Reject H0|H0 is true). (32)

– Type II error: Not rejecting H0 when H1 is true.

• In hypothesis testing, we initially specify a significance level α of a test.

• This is typically chosen as a small number such as 0.01, 0.05, or 0.1, so
that a rejection of H0 can actually be viewed as strong evidence against
the null (and in favor of H1).
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• We have to determine a test statistic (or simply a statistic), and a
critical region (or rejection region).

• The test statistic is a function of the data, i.e., a random quantity.

• Our particular sample of data gives rise to a particular realization of the
test statistic.

• We then check whether the realization of the test statistic falls into the
critical region, in which case we reject the null hypothesis.

• In summary, we have the following steps:

1. Specify H0 and H1.
2. Choose the significance level α.
3. Define the critical region. This requires knowledge of the distribution

of the test statistic under the null hypothesis.
4. Calculate the test statistic for the observed sample of data and reject

H0 if it falls into the critical region. Otherwise don’t reject H0.
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Hypotheses About a Single Element of β: The t Test

• Consider testing
H0 : βj = β0

j (33)

against
H1 : βj 6= β0

j (34)

where β0
j is the value of the population parameter βj specified by the

null hypothesis.

• Such a test is called a two–sided test because the alternative hypothesis
H1 allows for deviations in both directions of β1 from the value specified
by the null.

• Our test statistic is

tbβj
=

β̂j − β0
j

σ̂bβj

,

and we know that, if the null hypothesis holds, i.e., βj = β0
j

tbβj
∼ t(n− k − 1). (35)
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• We reject the null hypothesis if the observed value of tbβj
is rather unlikely

under the null hypothesis, i.e., if tbβj
is large in magnitude.

• More precisely, we reject H0 if, under the null hypothesis, the probability
of observing a value of |tbβj

| or larger is smaller than the prespecified

significance level α.

• The significance level α implies a specific critical value, c, which is
implicitly defined by

Pr(|tbβj
| > c|H0 is true) = α, (36)

i.e., c is the 1− α/2 quantile of the t(n− k − 1) distribution.

• We reject H0 if |tbβj
| > c = tn−k−1

1−α/2 .
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• Suppose that n− k − 1 = 18, and we want to test

H0 : βj = β0
j

against the the alternative hypothesis

H1 : βj 6= β0
j

at a significance level of 5%, i.e., α = 0.05 (which is often used).

• By inspection of Table 2, we observe that the 1 − α/2 = 1 − 0.05/2 =
0.975 quantile of the t(18) distribution is 2.101.

• So we reject H0 at the 5% level if

|tbβj
| > 2.101 = c.

• The situation is illustrated in the following figure.
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Note on Terminology: “Accept H0” vs. “Fail to reject
H0”

• When H0 is not rejected, this is reported as “we fail to reject H0 at the
(100α)% level” rather than as “H0 is accepted at the (100α)% level”.

• The reason is that there are generally infinitely many hypotheses that
cannot be rejected.

• In particular, we cannot reject H0 : βj = β0
j at significance level α

against a two–sided alternative if and only if β0
j is contained in a 1− α

confidence interval.

• To see this, note that we do not reject H0 if and only if

−tn−k−1
1−α/2 ≤

β̂j − β0
j

σ̂bβj

≤ tn−k−1
1−α/2 (37)

⇔ β̂j − tn−k−1
1−α/2 σ̂bβj

≤ β0
j ≤ β̂j + tn−k−1

1−α/2 σ̂bβj
, (38)

i.e., β0
j ∈ CI1−α.
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• Thus, for any β0
j in the 1 − α confidence interval, we cannot reject

H0 : βj = β0
j .

• Note how knowing an 1 − α confidence interval allows to test any
hypothesis H0 : βj = β0

j against H1 : βj 6= β0
j at significance level α.

• Failing to reject H0 simply means that the evidence in the data against
H0 is not strong enough at the pre–specified significance level.

• But we cannot say we accept H0.
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• In applications, we are often interested in testing the hypothesis

H0 : βj = 0, (39)

where β0
j in (33).

• Recall that βj measures the partial effect of xj on the expected value of
y, after controlling for the other regressors.

• Thus, hypothesis (39) means that xj has no partial effect on y.

• The alternative in this case is

H1 : βj 6= 0. (40)

• If (39) is rejected against (40) at the, e.g., 5% level, then this is often
expressed as “xj is statistically significant at the 5% level”; otherwise
“xj is statistically insignificant at the 5% level”.
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Example: Wage Equation

• Consider the wage equation

log(wage) = β0 + β1 · educ + β2 · exper + β3 · tenure + u, (41)

where

– wage is average hourly earnings,
– educ is years of eduction,
– exper is years of potential experience,
– tenure is years with current employer.

• We might be interested in testing whether the experience has no impact
on wage after controlling for education and tenure, i.e., we specify

H0 : β2 = 0. (42)
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• We estimate

̂log(wage) =0.2844
(0.1042)

+ 0.0920
(0.0073)

educ+ 0.0041
(0.0017)

exper+ 0.0221
(0.0031)

tenure,

where standard errors are given in parentheses.

• In this case, n = 526, k + 1 = 4, so n − k − 1 is rather large, and we
can use the critical values implied by the normal distribution.

• Thus, at the 5% and 1% levels, we would have

c0.05 = 1.96, and c0.01 = 2.576,

respectively.

• The t statistic is

tbβ2
=

0.0041
0.0017

= 2.412. (43)

• Thus, we reject H0 at the 5% level, but not at the 1% level.
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The p–value
• This illustrates that there might be a certain degree of subjectivity in the

approach, since the significance level is chosen ahead of time.

• As different people may prefer different significance levels, it is often
useful to report the p–value of a test.

• The decision to reject or not reject H0 depends on the critical value
tn−k−1
1−α/2 .

• If the significance level α becomes smaller, then we move farther into
the tails to determine the critical value.

• That is, the smaller is α, the more “difficult” it is to reject H0.

• The p–value is the smallest significance level at which the null hypothesis
would be rejected, given the observed value of the t statistic.

• Therefore, the p–value might be viewed as a measure for the strength of
evidence against the null hypothesis: The smaller the value, the stronger
the evidence against H0.
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• When the p–value is reported, decisions can be made regarding any
significance level α according to the rule

p− value

{ ≤
>

}
α ⇔

{
reject H0

do not reject H0.
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• To find the p–value for our testing problem above, we have to find the
probability that, under the null hypothesis, |tbβ2

| > 2.412.

• To do so, we calculate, using the cumulative distribution function (cdf)
of the standard normal distribution,

Pr(tbβ2
< −2.412|H0) + Pr(tbβ2

> 2.412|H0) = 2Pr(tbβ2
< −2.412|H0)

= 2Pr(tbβ2
> 2.412|H0)

= 0.0159 = p− value.

• Thus, the evidence against H0 appears to be strong.
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Statistical Significance vs. Economic Significance

• It might be argued, however, that the effect of experience is not that
large economically.

• For example, increasing experience by 5 years increases (predicted)
log(wage) by 5× 0.0041 = 0.0205, i.e., (predicted) wage is 2% higher.

• It is essential that the economic or practical implications of estimated
parameters are always discussed, i.e., that their magnitude is taken
into account in addition to their statistical significance, since economic
significance need not always accompany statistical significance.

• This is related to the too–large sample size problem:1 The t–statistic for
H0 : βj = 0 is

tbβj
=

β̂j

σ̂bβj

.

1See, e.g., Peter Kennedy: A Guide to Econometrics, Ch. 4, for discussion.
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• Now almost any relevant independent variable will have some influence,
however small, i.e., βj 6= 0, although the magnitude may be insignificant
economically.

• As the sample size n increases, σ̂bβj
decreases, and so eventually the t

statistic will eventually become statistically significant.

• Clearly this does not imply that we should use smaller samples—a larger
sample means more information and more precise estimates, which is
good.

• However, it should be discussed whether an effect of primary interest is
economically meaningful.

• Such discussion may also include the uncertainty about the parameter,
which can be fostered, e.g., by reporting confidence intervals.

• It seems also reasonable to use smaller significance levels as the sample
size increases, but clearly this does not settle the issue of economic
importance.
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One–sided Alternatives

• On the basis of economic theory or common sense, we can often specify
a one–sided alternative of the form

H1 : βj > β0
j . (44)

• Formally, the null hypothesis is then

H0 : βj ≤ β0
j . (45)

• In statistical terms, the null hypothesis (45) is composite, i.e., it contains
more than a single value for βj.

• The probability of rejection depends on βj.

• We choose the critical value such that the largest value of the type I
error under H0 is α.
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• That is, we consider the distribution of the test statistic at the boundary
of the null hypothesis, i.e., β0

j .

• If βj = β0
j , then the type I error is equal to α.

• If βj < β0
j , then the type I error is actually smaller than α.

• To see this, assume βj ≤ β0
j . Then

βj − β0
j

σ̂bβj

≤ 0,

and the t–statistic

tbβj
=

β̂j − β0
j

σ̂bβj

=
β̂j − βj

σ̂bβj

+
βj − β0

j

σ̂bβj

≤ β̂j − βj

σ̂bβj

.

36



• Hence

Pr
(
tbβj

> tn−k−1
1−α |H0

)
= Pr

(
β̂j − β0

j

σ̂bβj

> tn−k−1
1−α |H0

)

= Pr

(
β̂j − βj

σ̂bβj

+
βj − β0

j

σ̂bβj

> tn−k−1
1−α |H0

)

≤ Pr

(
β̂j − βj

σ̂bβj

> tn−k−1
1−α |H0

)

= α.

• That is, α measures the minimum degree of protection against a type I
error provided by the test.

• This guarantees strong evidence against H0 in case of rejection.
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• In summary, the procedure of the test is basically the same as before:

• With H0 being rejected if the t–statistic

tbβj
> c = tn−k−1

1−α , (46)

where c is the (1 − α)–quantile of the t distribution with n − k − 1
degrees of freedom, so that

Pr(tbβj
> c|H0 is true) = α.

• Note that the critical value is given by the (1− α)–quantile rather then
(1− α/2)–quantile for one–sided tests.

• The situation for H1 : βj > 0 (and that for H1 : βj < 0) is illustrated in
the following two figures for α = 0.05 and n− k− 1 = 18, so that, from
Table (2), c = 1.734.
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• If the alternative hypothesis is, instead of (44)

H1 : βj < β0
j , (47)

then the null is
H0 : βj ≥ β0

j , (48)

and H0 is rejected if

tbβj
< c = −tn−k−1

1−α = tn−k−1
α , (49)

i.e., critical value c is the α–quantile of the t distribution with n− k− 1
degrees of freedom, or minus the (1− α)–quantile of that distribution.
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• For example, in the wage equation (41), it may be reasonable to
hypothesize that the coefficient of exper (i.e., β2) is positive.

• For α = 0.05 and α = 0.01, the critical values are given by the 0.95
and 0.99 quantiles of the normal distribution, i.e., by 1.645 and 2.326,
respectively.

• We have already calculated the t statistic as

tbβ2
=

0.0041
0.0017

= 2.412,

i.e., we reject H0 even at the 1% level.

• The p–value for the one–sided alternative can likewise be calculated as

p–value = Pr(tbβ2
> 2.412|H0 is true) = 0.0079,

which is just the p–value for the two–sided hypothesis divided by 2.
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