Exercise Session - Problem Set 2

Fundamentals of Probability Theory

Problem 1 (Based on Greene, Example 7, p. 96)

Suppose that the random variables Y and X have the following joint probability distribution.

			X	
		0	1	2
	0	0.05	0.1	0.03
Y	1	0.21	0.11	0.19
	2	0.08	0.15	0.08

- a) What are the marginal distributions of the two random variables?
- b) Compute the following probabilities:
 - (1) Prob[Y < 2]
 - (2) Prob[Y < 2, X > 0]
 - (3) $Prob[Y = 1, X \ge 1]$
- c) Calculate the unconditional mean of X and the unconditional mean of Y. Calculate also Var(X) and Var(Y).
- d) Calculate Cov(X, Y) and Corr(X, Y). Under which assumption the two random variables X and Y would be independent? Does independence mean uncorrelatedness? Explain. What is about the converse? Does zero correlation between two random variables imply that they are independent? Explain.
- e) What are the conditional distributions of Y given X = 2 and of X given Y > 0?
- f) Find the expected value of Y conditional on X, E(Y|X).

Problem 2 (Based on Greene, Example 8, p. 96)

Minimum mean square predictor and minimum mean square linear predictor.

For the joint distribution in Problem 1, compute $E(y - E(y|x))^2$. Now find the *a* and *b* that minimize the function $E(y - a - bx)^2$. Given the solutions for *a* and *b*, verify and interpret the following inequality $E(y - E(y|x))^2 \leq E(y - a - bx)^2$.

Problem 3

Partial effects in the conditional expectation function. Consider the following conditional expectation functions:

- 1) $E(y|x_1, x_2, x_3) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_3$
- 2) $E(log(y)|x_1, x_2, x_3) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_3,$

with y being the expected value of hourly wage and log(y) being the logarithm of hourly wage, respectively. The explanatory variables are years in education (x_1) , years in the workforce (x_2) , and a gender dummy (x_3) .

Are the models in 1) and 2) linear in the explanatory variables and in the population parameters? What are the partial effects with respect to x_1 , x_2 , and x_3 ? Give an interpretation of the partial effects on the two conditional expectations based on the wage equation example. Explain the differences between 1) and 2).