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Exercise Session - Problem Set 1

Problem 1

For the matrices

L 3 s 72 0 2 -1 175
A(2_20> B=(1 3| c=(4 -9 3| D={11 8 2 |,
2 4 5 2 3 2 4 0

Problem 2 (Based on Wooldridge, Example D.14, p. 818)

a) Use the properties of trace to prove that for any n x m matrix tr(A’A) = tr(AA’).
b) Verify that tr(A’A) = tr(AA’) using matrix A in Problem 1.

Problem 3

For the matrix

W = W
= W

calculate |A|, tr(A), A™".

Problem 4

Write the following system of linear equations in matrix notation and solve for the vector x. Under which
assumption a nonhomogeneous system of equations will have an unique solution?

X1 — T2 + r3 = 2
1T + Ty — X3 = 0
—r1 — X9 — x3 = 6

Problem 5 (Based on Greene, p.12-15 and Example 5, p. 59)

a) Express the sum of the elements in any n X 1 vector x in matrix terms. Do the same for the case
where all elements in x are equal to the same constant a # 0.

b) Express the arithmetic mean for any n x 1 vector x.

¢) A fundamental matrix in econometrics is the idempotent matrix M, which is used to form devia-
tions from sample average. For the nx 1 vector x derive M?'. What are the properties of idempotent
matrices?
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d) Express the sum of deviations about the mean for the n x 1 vector x using M. Express also the
sum of squared deviations about the mean in matrix terms.

e) Prove that for K x 1 column vectors, x;,7 = 1,...,n, and some nonzero vector a,

Y (xi —a)(xi —a) = X'M'X + n(% - a)(x - a),

where the ith row of X is x; and M is the idempotent matrix defined in c).

[Hint: For the solution of a)-d) use a n x 1 vector of ones denoted by j,,]



