Exercise Session - Problem Set 1

Problem 1

For the matrices

$$\mathbf{A} = \begin{pmatrix} 1 & -3 & 5 \\ 2 & -2 & 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 7 & 2 \\ 1 & -3 \\ 2 & 4 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 0 & 2 & -1 \\ 4 & -9 & -3 \\ 5 & 2 & 3 \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} 1 & 7 & 5 \\ 11 & 8 & 2 \\ 2 & 4 & 0 \end{pmatrix},$$
compute i) \mathbf{AB} ii) \mathbf{BA} iii) $\mathbf{A'B'}$ iv) \mathbf{AC} v) \mathbf{CA} vi) $\mathbf{C-D}$ vii) $\mathbf{A+D}.$

Problem 2 (Based on Wooldridge, Example D.14, p. 818)

- a) Use the properties of trace to prove that for any $n \times m$ matrix $tr(\mathbf{A}'\mathbf{A}) = tr(\mathbf{A}\mathbf{A}')$.
- b) Verify that $tr(\mathbf{A}'\mathbf{A}) = tr(\mathbf{A}\mathbf{A}')$ using matrix **A** in Problem 1.

Problem 3

For the matrix

$$\mathbf{A} = \left(\begin{array}{rrrr} 1 & 3 & 3\\ 1 & 4 & 3\\ 1 & 3 & 4 \end{array}\right)$$

calculate $|\mathbf{A}|$, $tr(\mathbf{A})$, \mathbf{A}^{-1} .

Problem 4

Write the following system of linear equations in matrix notation and solve for the vector \mathbf{x} . Under which assumption a nonhomogeneous system of equations will have an unique solution?

Problem 5 (Based on Greene, p.12–15 and Example 5, p. 59)

- a) Express the sum of the elements in any $n \times 1$ vector **x** in matrix terms. Do the same for the case where all elements in **x** are equal to the same constant $a \neq 0$.
- b) Express the arithmetic mean for any $n \times 1$ vector **x**.
- c) A fundamental matrix in econometrics is the idempotent matrix \mathbf{M}^0 , which is used to form deviations from sample average. For the $n \times 1$ vector \mathbf{x} derive \mathbf{M}^0 . What are the properties of idempotent matrices?

- d) Express the sum of deviations about the mean for the $n \times 1$ vector **x** using \mathbf{M}^{0} . Express also the sum of squared deviations about the mean in matrix terms.
- e) Prove that for $K \times 1$ column vectors, $\mathbf{x}_i, i = 1, ..., n$, and some nonzero vector \mathbf{a} ,

$$\sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{a}) (\mathbf{x}_i - \mathbf{a})' = \mathbf{X}' \mathbf{M}^0 \mathbf{X} + n(\bar{\mathbf{x}} - \mathbf{a}) (\bar{\mathbf{x}} - \mathbf{a})',$$

where the *ith* row of **X** is \mathbf{x}'_i and \mathbf{M}^0 is the idempotent matrix defined in c).

[Hint: For the solution of a)–d) use a $n\times 1$ vector of ones denoted by $\mathbf{j}_n]$