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Notation and statistical foundations 
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Notation and statistical foundations – Vectors 

� Column vector: 

� Transposed (row vector): [ ]
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� Transposed (row vector):

� Inner product:
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� PDF: probability density function f(x)

� Example: Normal distribution:
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Notation and statistical foundations – density function
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� Example: Standard normal distribution: 
N(0,1), µ = 0, σ = 1
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� Standard logistic distribution:

Exponential distribution: 
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Notation and statistical foundations – distibutions
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Exponential distribution: 

� Poisson distribution:
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� CDF: cumulative distribution function F(x)

� Example: Standard normal distribution:
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Notation and statistical foundations – CDF
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� The cdf is the integral of the pdf.



� Rule I: 

� Rule II: 
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Notation and statistical foundations – logarithms
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� Rule II: 

� Rule III:
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� Why not use OLS instead?

Introduction to the Probit model – binary variables
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� Nonlinear estimation, for example by maximum likelihood.
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� Latent variable: Unobservable variable y* which can take 
all values in (-∞, +∞).

� Example: y* = Utility(Labour income) - Utility(Non labour 
income)

Underlying latent model: 

Introduction to the Probit model – latent variables
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� Underlying latent model: 
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� Probit is based on a latent model:

Introduction to the Probit model – latent variables
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Assumption: Error terms are independent and normally 
distributed:
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� Example:

Introduction to the Probit model – CDF
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� F(z) lies between zero and one

� CDF of Probit: CDF of Logit:

Introduction to the Probit model – CDF Probit vs. Logit
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� PDF of Probit: PDF of Logit:

Introduction to the Probit model – PDF Probit vs. Logit
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� Joint density:

Introduction to the Probit model – The ML principle
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� Log likelihood function:
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� The principle of ML: Which value of  β maximizes the 
probability of observing the given sample?

Introduction to the Probit model – The ML principle
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� Example taken from Greene, Econometric Analysis, 5. ed. 
2003, ch. 17.3.

� 10 observations of a discrete distribution

� Random sample: 5, 0, 1, 1, 0, 3, 2, 3, 4, 1

Introduction to the Probit model – Example
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� PDF: 

� Joint density : 

� Which value of θ makes occurance of the observed sample 
most probable?
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Application

� Analysis of the effect of  a new teaching method in 
economic sciences

� Data: 
Beobachtung GPA TUCE PSI Grade Beobachtung GPA TUCE PSI Grade

1 2,66 20 0 0 17 2,75 25 0 0
2 2,89 22 0 0 18 2,83 19 0 0
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Source: Spector, L. and M. Mazzeo, Probit Analysis and Economic Education. In: 
Journal of Economic Education, 11, 1980, pp.37-44

3 3,28 24 0 0 19 3,12 23 1 0
4 2,92 12 0 0 20 3,16 25 1 1
5 4 21 0 1 21 2,06 22 1 0
6 2,86 17 0 0 22 3,62 28 1 1
7 2,76 17 0 0 23 2,89 14 1 0
8 2,87 21 0 0 24 3,51 26 1 0
9 3,03 25 0 0 25 3,54 24 1 1
10 3,92 29 0 1 26 2,83 27 1 1
11 2,63 20 0 0 27 3,39 17 1 1
12 3,32 23 0 0 28 2,67 24 1 0
13 3,57 23 0 0 29 3,65 21 1 1
14 3,26 25 0 1 30 4 23 1 1
15 3,53 26 0 0 31 3,1 21 1 0
16 2,74 19 0 0 32 2,39 19 1 1



Application – Variables

� Grade
Dependent variable. Indicates whether a student improved 
his grades after the new teaching method PSI had been 
introduced (0 = no, 1 = yes). 

� PSI
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� PSI
Indicates if a student attended courses that used the new 
method (0 = no, 1 = yes).

� GPA
Average grade of the student

� TUCE
Score of an intermediate test which shows previous 
knowledge of a topic.



Application – Estimation 

� Estimation results of the model (output from Stata):
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Application – Discussion

� ML estimator: Parameters were obtained by maximization 
of the log likelihood function.
Here: 5 iterations were necessary to find the maximum of 
the log likelihood function (-12.818803)

� Interpretation of the estimated coefficients:
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� Interpretation of the estimated coefficients:

� Estimated coefficients do not quantify the influence of the 
rhs variables on the probability that the lhs variable takes 
on the value one. 

� Estimated coefficients are parameters of the latent model. 



Coefficients and marginal effects

� The marginal effect of a rhs variable is the effect of an unit 
change of this variable on the probability P(Y = 1|X = x), 
given that all other rhs variables are constant:
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� Recap: The slope parameter of the linear regression model 
measures directly the marginal effect of the rhs variable on 
the lhs variable. 
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Coefficients and marginal effects

� The marginal effect depends on the value of the rhs 
variable.

� Therefore, there exists an individual marginal effect for 
each person of the sample: 
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Coefficients and marginal effects – Computation 

� Two different types of marginal effects can be calculated:

� Average marginal effect 
Stata command: margin

25

� Marginal effect at the mean: 
Stata command: mfx compute



Coefficients and marginal effects – Computation 

� Principle of the computation of the average marginal 
effects:
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� Average of individual marginal effects



Coefficients and marginal effects – Computation 

� Computation of average marginal effects depends on type 
of rhs variable:

� Continuous variables like TUCE and GPA:
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� Dummy variable like PSI:
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Coefficients and marginal effects – Interpretation

� Interpretation of average marginal effects: 

� Continuous variables like TUCE and GPA:
An infinitesimal change of TUCE or GPA changes the 
probability that the lhs variable takes the value one by X%.

� Dummy variable like PSI:
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� Dummy variable like PSI:
A change of PSI from zero to one changes the probability 
that the lhs variable takes the value one by X percentage 
points. 



Coefficients and marginal effects – Interpretation 

Variable Estimated marginal effect Interpretation

GPA 0.364 If the average grade of a 
student goes up by an 
infinitesimal amount, 
the probability for the 
variable grade taking 
the value one rises by 
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the value one rises by 
36.4 %. 

TUCE 0.011 Analog to GPA,with an 
increase of 1.1%.

PSI 0.374 If the dummy variable 
changes from zero to 
one, the probability for 
the variable grade 
taking the value one 
rises by 37.4 ppts. 



Coefficients and marginal effects – Significance

� Significance of a coefficient: test of the hypothesis whether 
a parameter is significantly different from zero.

� The decision problem is similar to the t-test, wheras the 
probit test statistic follows a standard normal distribution. 
The z-value is equal to the estimated parameter divided by 
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The z-value is equal to the estimated parameter divided by 
its standard error. 

� Stata computes a p-value which shows directly the 
significance of a parameter:

z-value p-value Interpretation

GPA : 3.22 0.001 significant

TUCE: 0,62 0,533 insignificant

PSI: 2,67 0,008 significant



Coefficients and marginal effects

� Only the average of the marginal effects is displayed. 

� The individual marginal effects show large variation:
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Stata command: margin, table



Coefficients and marginal effects

� Variation of marginal effects may be quantified by the  
confidence intervals of the marginal effects. 

� In which range one can expect a coefficient of the 
population? 

In our example:
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� In our example:

Estimated coefficient Confidence interval (95%)

GPA: 0,364 - 0,055   - 0,782

TUCE: 0,011 - 0,002   - 0,025

PSI: 0,374 0,121   - 0,626



Coefficients and marginal effects

� What is calculated by mfx? 

� Estimation of the marginal effect at the sample mean.
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Sample mean



Goodness of fit

� Goodness of fit may be judged by McFaddens Pseudo R².

� Measure for proximity of the model to the observed data.

� Comparison of the estimated model with a model which 
only contains a constant as rhs variable. 
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� : Likelihood of model of interest.

� : Likelihood with all coefficients except that of 
the intercept restricted to zero.

� It always holds that                

)(ˆln FullML

)(ˆln InterceptML

)(ˆln FullML ≥ )(ˆln InterceptML



Goodness of fit

� The Pseudo R² is defined as:

� Similar to the R² of the linear regression model, it holds 
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� Similar to the R² of the linear regression model, it holds 
that 

� An increasing Pseudo R² may indicate a better fit of the 
model, whereas no simple interpretation like for the R² of 
the linear regression model is possible. 
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Goodness of fit

� A high value of R²McF does not necessarily indicate a good 
fit, however, as R²McF = 1 if                 = 0.

� R²McF increases with additional rhs variables. Therefore, an 
adjusted measure may be appropriate:

)(ˆln FullML

)(ˆln KML −
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� Further goodness of fit measures: R² of McKelvey and 
Zavoinas, Akaike Information Criterion (AIC), etc. See 
also the Stata command fitstat.
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Hypothesis tests

� Likelihood ratio test: possibility for hypothesis testing, for 
example for variable relevance.

� Basic principle: Comparison of the log likelihood functions 
of the unrestricted model (ln LU) and that of the restricted 
model (ln LR) 
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model (ln LR) 

� Test statistic:

� The test statistic follows a χ² distribution with degrees of 
freedom equal to the number of restrictions. 
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Hypothesis tests

� Null hypothesis: All coefficients except that of the intercept 
are equal to zero. 

� In the example: 

� Prob > chi2 = 0.0014

2LR (3) 15,55χ =

38

� Interpretation: The hypothesis that all coefficients are equal 
to zero can be rejected at the 1 percent significance level. 


