

The Probit Model

Alexander Spermann University of Freiburg SoSe 2009 Course outline

- 1. Notation and statistical foundations
- 2. Introduction to the Probit model
- 3. Application
- 4. Coefficients and marginal effects
- 5. Goodness-of-fit
- 6. Hypothesis tests

Notation and statistical foundations

1.
$$y_i = \beta_1 + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \varepsilon_i$$
 Gujarati
 $y_t = \beta_0 + \beta_1 x_{t1} + ... + \beta_k x_{tk} + u_t$ Wooldridge
2. Matrix
 $Y = X \beta + \varepsilon$
 $Y = x'\beta + \varepsilon$
 $Y = X \hat{\beta} + \hat{u}$
 $y_i = x'_i \beta + \varepsilon_i$

$$\begin{array}{ccc} x_{i}^{'}\boldsymbol{\beta} & x_{i}^{'}\boldsymbol{\beta} \\ (1 \quad x_{1} \quad x_{2}) \begin{pmatrix} \boldsymbol{\beta}_{0} \\ \boldsymbol{\beta}_{1} \\ \boldsymbol{\beta}_{2} \end{pmatrix} & (1 \quad x_{2} \quad x_{3}) \begin{pmatrix} \boldsymbol{\beta}_{1} \\ \boldsymbol{\beta}_{2} \\ \boldsymbol{\beta}_{3} \end{pmatrix} \end{array}$$

Notation and statistical foundations – Vectors

> Column vector: $a_{nx1} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$

- > Transposed (row vector): $a_{1xn} = [a_1 \quad a_2 \quad \dots \quad a_n]$
- Inner product:

$$a'b = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \sum a_i b_i$$

Notation and statistical foundations – density function

- PDF: probability density function f(x)
- > Example: Normal distribution:

> Example: Standard normal distribution: N(0,1), $\mu = 0$, $\sigma = 1$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Notation and statistical foundations – distibutions

Standard logistic distribution:

$$f(x) = \frac{e^x}{(1+e^x)^2}, \mu = 0, \sigma^2 = \frac{\pi^2}{3}$$

Exponential distribution:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, x \ge 0\\ 0, x \le 0 \end{cases}, \theta > 0, \mu = \theta, \sigma^2 = \theta^2 \end{cases}$$

Poisson distribution:

$$f(x) = \frac{e^{-\theta}\theta^x}{x!}, \mu = \theta, \sigma^2 = \theta$$

Notation and statistical foundations - CDF

- CDF: cumulative distribution function F(x)
- > Example: Standard normal distribution:

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Notation and statistical foundations – logarithms

> Rule I:
$$y = xz$$

 $\log y = \log x + \log z$

> Rule II:
$$y = x^n$$

 $\log y = n \log x$

> Rule III:
$$y = a x^b$$

 $\log y = \log a + b \log x$

Introduction to the Probit model – binary variables

> Why not use OLS instead?

> Nonlinear estimation, for example by maximum likelihood.

Introduction to the Probit model – latent variables

- > Latent variable: Unobservable variable y^* which can take all values in $(-\infty, +\infty)$.
- Example: y* = Utility(Labour income) Utility(Non labour income)
- Underlying latent model:

$$y_i = \begin{cases} 1, y_i^* > 0\\ 0, y_i^* \le 0 \end{cases}$$
$$y_i^* = x_i^{\beta} + \varepsilon_i$$

Introduction to the Probit model – latent variables

Probit is based on a latent model:

 $P(y_i = 1 | x) = P(y_i^* > 0 | x)$ $= P(x_i^{'}\beta + \varepsilon_i > 0 | x)$ $= P(\varepsilon_i > -x_i^{'}\beta | x)$ $= 1 - F(-x_i^{'}\beta)$

Assumption: Error terms are independent and normally distributed:

$$P(y_i = 1 | x) = 1 - \Phi(-\frac{x_i'\beta}{\sigma}), \sigma \equiv 1$$
$$= \Phi(x_i'\beta) \text{ because of symmetry}$$

Introduction to the Probit model – CDF

> Example:

Introduction to the Probit model – CDF Probit vs. Logit

- \succ F(z) lies between zero and one
- CDF of Probit:

CDF of Logit:

Introduction to the Probit model – PDF Probit vs. Logit

PDF of Probit: PDF of Logit:

Introduction to the Probit model – The ML principle

> Joint density:

$$f(y \mid x, \beta) = \prod_{i} F(x_{i}^{'}\beta)^{y_{i}} \left[1 - F(x_{i}^{'}\beta)\right]^{(1-y_{i})}$$
$$= \prod_{i} F_{i}^{y_{i}} (1 - F_{i})^{1-y_{i}}$$

Log likelihood function:

$$\ln L = \sum_{i} y_{i} \ln F_{i} + (1 - y_{i}) \ln(1 - F_{i})$$

Introduction to the Probit model – The ML principle

> The principle of ML: Which value of β maximizes the probability of observing the given sample?

$$\frac{\partial \ln L}{\partial \beta} = \sum_{i} \left[\frac{y_i f_i}{F_i} + \frac{(1 - y_i)(-f_i)}{1 - F_i} \right] x_i$$
$$= \sum_{i} \left[\frac{y_i - F_i}{F_i(1 - F_i)} f_i \right] x_i$$
$$= 0$$

Introduction to the Probit model – Example

- Example taken from Greene, Econometric Analysis, 5. ed. 2003, ch. 17.3.
- > 10 observations of a discrete distribution
- Random sample: 5, 0, 1, 1, 0, 3, 2, 3, 4, 1
- > PDF: $f(x_i, \theta) = \frac{e^{-\theta} \theta^{x_i}}{x_i!}$
- > Joint density : $f(x_1, x_2, ..., x_{10} | \theta) = \prod_{i=1}^{10} f(x_i, \theta) = \frac{e^{-10\theta} \cdot \theta^{\sum_i x_i}}{\prod_{i=1}^{10} x_i!} = \frac{e^{-10\theta} \cdot \theta^{20}}{207,36}$
- > Which value of θ makes occurance of the observed sample most probable?

Introduction to the Probit model – Example

$$\ln L(\theta) = -10\theta + 20\ln\theta - 12,242$$
$$\frac{d\ln L(\theta)}{d\theta} = -10 + \frac{20}{\theta} = 0$$

$$\frac{d^2 \ln L(\theta)}{d\theta^2} = -\frac{20}{\theta^2}$$
$$\Rightarrow Maximum$$

Application

Analysis of the effect of a new teaching method in economic sciences

> Data:

Beobachtung	GPA	TUCE	PSI	Grade	Beobachtung	GPA	TUCE	PSI	Grade
1	2,66	20	0	0	17	2,75	25	0	0
2	2,89	22	0	0	18	2,83	19	0	0
3	3,28	24	0	0	19	3,12	23	1	0
4	2,92	12	0	0	20	3,16	25	1	1
5	4	21	0	1	21	2,06	22	1	0
6	2,86	17	0	0	22	3,62	28	1	1
7	2,76	17	0	0	23	2,89	14	1	0
8	2,87	21	0	0	24	3,51	26	1	0
9	3,03	25	0	0	25	3,54	24	1	1
10	3,92	29	0	1	26	2,83	27	1	1
11	2,63	20	0	0	27	3,39	17	1	1
12	3,32	23	0	0	28	2,67	24	1	0
13	3,57	23	0	0	29	3,65	21	1	1
14	3,26	25	0	1	30	4	23	1	1
15	3,53	26	0	0	31	3,1	21	1	0
16	2,74	19	0	0	32	2,39	19	1	1

Source: Spector, L. and M. Mazzeo, Probit Analysis and Economic Education. In: Journal of Economic Education, 11, 1980, pp.37-44

Application – Variables

> Grade

Dependent variable. Indicates whether a student improved his grades after the new teaching method PSI had been introduced (0 = no, 1 = yes).

> PSI

Indicates if a student attended courses that used the new method (0 = no, 1 = yes).

> GPA

Average grade of the student

> TUCE

Score of an intermediate test which shows previous knowledge of a topic.

Application – Estimation

Estimation results of the model (output from Stata):

. probit gr	ade psi tuce g	pa					
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likelih log likelih log likelih log likelih log likelih	ood = -20.59 ood = -13.315 ood = -12.832 ood = -12.818 ood = -12.818	173 851 843 826 803				
Probit estim Log likeliho	ates od = -12.81880	3		Number LR chi Prob > Pseudo	c of obs 2(3) chi2 R2	= = =	32 15.55 0.0014 0.3775
grade	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
psi tuce gpa _cons	1.426332 .0517289 1.62581 -7.45232	.595037 .0838901 .6938818 2.542467	2.40 0.62 2.34 -2.93	0.017 0.537 0.019 0.003	.2600 1126 .2658 -12.43	814 927 269 546	2.592583 .2161506 2.985794 -2.469177

Application – Discussion

- ML estimator: Parameters were obtained by maximization of the log likelihood function.
 Here: 5 iterations were necessary to find the maximum of the log likelihood function (-12.818803)
- > Interpretation of the estimated coefficients:
 - Estimated coefficients do not quantify the influence of the rhs variables on the probability that the lhs variable takes on the value one.
 - > Estimated coefficients are parameters of the latent model.

> The marginal effect of a rhs variable is the effect of an unit change of this variable on the probability P(Y = 1|X = x), given that all other rhs variables are constant:

$$\frac{\partial P(y_i = 1 \mid x_i)}{\partial x_i} = \frac{\partial E(y_i \mid x_i)}{\partial x_i} = \varphi(x_i \mid \beta)\beta$$

Recap: The slope parameter of the linear regression model measures directly the marginal effect of the rhs variable on the lhs variable.

- The marginal effect depends on the value of the rhs variable.
- Therefore, there exists an individual marginal effect for each person of the sample:

Coefficients and marginal effects – Computation

- > Two different types of marginal effects can be calculated:
 - Average marginal effect
 Stata command: margin

Marginal effects on Prob(grade==1) after probit						
grade	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	2227002	1100461			1404101	
gpa	. 303/003	.1129461	3.22	0.001	.1424181	.5851586
tuce	.011476	.0184085	0.62	0.533	024604	.047556
psi	.3737518	.1399912	2.67	0.008	.0993741	.6481295

Marginal effect at the mean:
 Stata command: mfx compute

Coefficients and marginal effects – Computation

Principle of the computation of the average marginal effects:

> Average of individual marginal effects

Coefficients and marginal effects – Computation

- Computation of average marginal effects depends on type of rhs variable:
 - > Continuous variables like TUCE and GPA:

$$AME = \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i^{\dagger} \beta) \beta$$

> Dummy variable like PSI:

$$AME = \frac{1}{n} \sum_{i=1}^{n} \left[\Phi(x_i \beta | x_i^k = 1) - \Phi(x_i \beta | x_i^k = 0) \right]$$

Coefficients and marginal effects – Interpretation

- > Interpretation of average marginal effects:
 - Continuous variables like TUCE and GPA: An infinitesimal change of TUCE or GPA changes the probability that the lhs variable takes the value one by X%.
 - > Dummy variable like PSI:
 - A change of PSI from zero to one changes the probability that the lhs variable takes the value one by X percentage points.

Coefficients and marginal effects – Interpretation

Variable	Estimated marginal effect	Interpretation
GPA	0.364	If the average grade of a student goes up by an infinitesimal amount, the probability for the variable grade taking the value one rises by 36.4 %.
TUCE	0.011	Analog to GPA, with an increase of 1.1%.
PSI	0.374	If the dummy variable changes from zero to one, the probability for the variable grade taking the value one rises by 37.4 ppts.

Coefficients and marginal effects – Significance

- Significance of a coefficient: test of the hypothesis whether a parameter is significantly different from zero.
- The decision problem is similar to the t-test, wheras the probit test statistic follows a standard normal distribution.
 The z-value is equal to the estimated parameter divided by its standard error.
- Stata computes a p-value which shows directly the significance of a parameter:

	<u>z-value</u>	<u>p-value</u>	Interpretation
GPA:	3.22	0.001	significant
TUCE:	0,62	0,533	insignificant
PSI:	2,67	0,008	significant

- > Only the average of the marginal effects is displayed.
- > The individual marginal effects show large variation:

Descriptive statistic	s for individual marg	inal effects
Mean S gpa 0.36379 0.2135 tuce 0.01148 0.0068 psi 0.37375 0.1287	D Min Max 8 0.06783 0.64807 7 0.00209 0.02063 8 0.06042 0.51959	

Stata command: margin, table

- Variation of marginal effects may be quantified by the confidence intervals of the marginal effects.
- In which range one can expect a coefficient of the population?
- > In our example:

	Estimated coefficient	Confidence interval (95%)
GPA:	0,364	- 0,055 - 0,782
TUCE:	0,011	- 0,002 - 0,025
PSI:	0,374	0,121 - 0,626

- > What is calculated by mfx?
- > Estimation of the marginal effect at the sample mean.

Sample mean

Goodness of fit

- ➢ Goodness of fit may be judged by McFaddens Pseudo R².
- > Measure for proximity of the model to the observed data.
- Comparison of the estimated model with a model which only contains a constant as rhs variable.
 - > $\ln \hat{L}(M_{Full})$: Likelihood of model of interest.
 - > $\ln \hat{L}(M_{Intercept})$: Likelihood with all coefficients except that of the intercept restricted to zero.
 - ▶ It always holds that $\ln \hat{L}(M_{Full}) \ge \ln \hat{L}(M_{Intercept})$

Goodness of fit

> The Pseudo R² is defined as:

$$PseudoR^{2} = R_{McF}^{2} = 1 - \frac{\ln \hat{L}(M_{Full})}{\ln \hat{L}(M_{Intercept})}$$

- Similar to the R² of the linear regression model, it holds that $0 \le R_{McF}^2 \le 1$
- An increasing Pseudo R² may indicate a better fit of the model, whereas no simple interpretation like for the R² of the linear regression model is possible.

Goodness of fit

- A high value of R^2_{McF} does not necessarily indicate a good fit, however, as $R^2_{McF} = 1$ if $\ln \hat{L}(M_{Full}) = 0$.
- > R²_{McF} increases with additional rhs variables. Therefore, an adjusted measure may be appropriate:

$$PseudoR_{adjusted}^{2} = \overline{R}_{McF}^{2} = 1 - \frac{\ln \hat{L}(M_{Full}) - K}{\ln \hat{L}(M_{Intercept})}$$

Further goodness of fit measures: R² of McKelvey and Zavoinas, Akaike Information Criterion (AIC), etc. See also the Stata command fitstat. Hypothesis tests

- Likelihood ratio test: possibility for hypothesis testing, for example for variable relevance.
- Basic principle: Comparison of the log likelihood functions of the unrestricted model ($\ln L_U$) and that of the restricted model ($\ln L_R$)

> Test statistic:
$$LR = -2 \ln \lambda = -2(\ln L_R - \ln L_U) \sim \chi^2(K)$$

 $\lambda = \frac{L_R}{L_U} \quad 0 \le \lambda \le 1$

> The test statistic follows a χ^2 distribution with degrees of freedom equal to the number of restrictions.

Hypothesis tests

- Null hypothesis: All coefficients except that of the intercept are equal to zero.
- > In the example: LR $\chi^2(3) = 15,55$
- > Prob > chi2 = 0.0014
- Interpretation: The hypothesis that all coefficients are equal to zero can be rejected at the 1 percent significance level.