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I. Basics of Time Series Analysis 
 

Definition of Time Series 
 

In time series analysis a time series is defined as a realisation of stochastic process where the time 

index takes on a finite or countable infinite set of values. Denoted, e.g. {Yt | for all integers t}. 

Time series models are all based on the assumption that the series to be forecasted has been 

generated by a stochastic process. Therefore, we assume that each observed value Y1, Y2, …, YT in 

the series is drawn randomly from a probability distribution. 

A stochastic process exhibits a random process, denoted as {Yt}, which can take a value between -∞ 

and +∞. The observed value Yt at time t describes one realisation of these stochastic processes. 
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I.1 Stationarity 
 

Strict Stationary: 

 

Joint distribution: Y(t) = {Y(1), Y(2), …, Y(T)} 

→ invariant under time shift 

 

The random variables Y(t+1), … Y(t+n) have the same joint distribution as Y(t+1+c), …, Y(t+n+c), 

with c as a arbitrary positive integer. This is a very strong condition that is hard to verify empirically. 
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Weak Stationarity: 

Weak stationarity exists, when expected value, variance and covariance of the distribution random 

variables are constant for all points of time. 

 

a) E(Yt) = µ = constant, ∀ t, (mean stationarity) 

b) Var(Yt) = σt
2 = σ2 = constant, ∀ t (variance stationarity), and 

c) Cov(Yt, Yt-j) = σtj = σj = constant, ∀ t (covariance stationarity), 

E[(yt – µ)(yt-j – µ)] = E[(ys – µ)(ys-j – µ)] for all t ≠ s. 

 

The data of the underlying process are time invariant and neither the shape nor the parameters of 

the distribution change over time. The covariance only depends on j, where j is an arbitrary integer. 

 

Suppose that we have observed T data points {Yt⏐t = 1, …, T}: 
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• weak stationarity implies that the time plot of the data would show that the T values fluctuate 

with constant variation around a constant level. 

 

• we assume that the first two moments of Yt are finite 

 

• from definitions, if Yt is strictly stationary and its first two moments are finite, then Yt is also 

weakly stationary, but the converse is not true in general 

 

• however, if the time series Yt is normally distributed, then weak stationarity is equivalent to strict 

stationarity. 
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The covariance γj = Cov(Yt, Yt-j) is called the lag-j autocovariance of Yt with the following properties: 

(a) γ0 = Var(Yt) and 

(b) γ-j = γj. 

Cov(Yt, Yt-(-j))= Cov(Yt-(-j), Yt) = Cov(Yt+j, Yt) = Cov(Yt1, Yt1-j), where t1 = t + j. 

 

The statistical ratios to describe weakly stationary processes are 

 

a) the autocovariance function for the direction of interrelation, 

b) the autocorrelation function (ACF) for the strength and direction of interrelation, and 

c) the partial autocorrelation function (PACF) which measure the effect of one specific lag j 

holding all t-j-1 lags in between constant. 
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I.2 Autocorrelation Function 
 

Consider a weakly stationary series Yt. When linear dependence between Yt and its past values Yt-j 

is of interest, the concept of correlation is generalized to autocorrelation. The correlation coefficient 

between Yt and Yt-j is called the lag-j autocorrelation of Yt and is commonly denoted by ρj, which 

under the weak stationarity assumption is a function of j only. Specifically, we define 
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where the property Var(Yt) = Var(Yt-j) for a weakly stationary series is used. From the definition, we 

have ρ0 = 1, ρj = ρ-j, and -1 ≤ ρj ≤ 1. In addition, a weakly stationary series Yt is not serially correlated 

if and only if ρj = 0 for all j > 0. 
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For a given sample of returns , let T
1tt }r{ = r  be the sample mean, i.e. ∑
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The autocorrelation coefficients of random data have a sampling distribution which is approximately 

normally distributed with a mean of zero and a standard deviation of N
1

. Under certain 

assumptions, C
N

= ± ⋅95%
12  can be viewed as a 95% confidence interval, and empirical 

autocorrelation coefficients which lay outside of this interval, are significantly different from zero. 

10 



 Prof. Dr. Roland Füss  ●  Lecture Series in Applied Econometrics  ●  Summer Term 2008  

Box and Pierce (1970) propose the Portmanteau statistic: 

 

( ) ( )2 2

1

ˆ ~
m

j
j

Q m T mρ χ
=

= ⋅∑  

H0: ρi = … = ρm = 0 

H1: ρ1 ≠ 0  for i ∈ {1, …, m}. 

 

Ljung-Box (1978) modified the Q(m) statistic to increase the power of the test in finite samples: 
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→ number of autocorrelation coefficients should be around 20 % of the sample size 

 

Example: Correlogram for: ( )t t t tY Y N10.85 ; 0,1ε ε−= + ∼  (upper graph) and 

( )t t t tY Y N10.6 ; 0,1ε ε−= − + ∼  (lower graph), where ( )t tE Y 1 0ε −⋅ =  
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• if α  is positive the autocorrelation function decreases exponentially 

 

• if α  is negative the ACF oscillates around zero. For both cases the ACF dies out over time 
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I.3 Partial Autocorrelation Function (PACF) 
 

Assume an equation appear several variables, for example in the following model: 

AR(1):  Yt = φ0,1 + φ1,1Yt-1 + u1t 

AR(2):  Yt = φ0,2 + φ1,2Yt-1 + φ2,2Yt-2 + u2t 

AR(3):  Yt = φ0,3 + φ1,3Yt-1 + φ2,3Yt-2 + φ3,3Yt-3 + u3t 

… 

AR(p):  Yt = φ0,p + φ1,pYt-1 + φ2,pYt-2 + φ3,pYt-3 + … + φp,pYt-p + upt 
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• Partial Autocorrelation Function (PACF), τφ : similar to the normal ACF, the PACF measures 

the correlation between  and tY tY τ− , but the lags in between (t-j+1, t-j+2,…,t-1) are held 

constant so that the contribution of the individual lag can be assessed. 

 

• The PACF for the same period is the variance: ( )t tPACF Y Y0 , 1φ = =  

 

• The PACF for the first lag is equal to the ACF since no lags in between exist: 1 1φ ρ=  

 

• Generally the PACF can be described by: 
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Example: PACF for: ( )t t t tY Y N10.85 ; 0,1ε ε−= + ∼  (upper graph) and 

( )t t t tY Y N10.6 ; 0,1ε ε−= − + ∼  (lower graph) 

 

• In contrast to the ACF which as the die-out property, the PACF is cut off after lag 1. This 

combination of properties for the ACF and PACF helps us to identify an AR process by 

looking at the correlogram. 
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I.4 Transformation of Data 
 
Differencing to eliminate Trends (Mean-Stationarity) 
 

Basically, a non-constant mean of a time series arises from two different characters: 

 

a) structural breaks with erratic changes of the means 

 

b) continuous increase or decrease of the mean over time 
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Difference operator ∆ 

If Yt is the original series then it follows 

∆Yt = Yt – Yt-1

the first differences of the time series Yt. 

If a time series must be differenced twice we formulate 

∆2Yt = ∆(∆Yt) = ∆(Yt – Yt-1) = ∆Yt - ∆Yt-1 = Yt - Yt-1 - Yt-1 + Yt-2 = Yt - 2Yt-1 + Yt-2

Consequently, a twice differencing corresponds to a filter which is applied to a series with the 

weights of the filter (1,-2,1). If a time series is differenced d of times we can write ∆dYt. 

19 



 Prof. Dr. Roland Füss  ●  Lecture Series in Applied Econometrics  ●  Summer Term 2008  

II. Unit Roots 
 

II.1 Integration Level 
 

A time series is called integrated of order d (= I(d)), if after d differencing the series follows a stable 

and invertible ARMA process and thus an I(0) process. The property of I(0) implies stationarity 

whereas the reverse does not hold. 

To highlight this issue we have to remind briefly, the properties of stability and invertibilty of an 

ARMA process. In the simplest case of an ARMA(1,1) process without a constant and with a white 

noise error term ε we obtain: 

Yt = γYt-1 + θεt-1 + εt. 

 

This process is stationary and invertible, if γ and θ in absolute values is lesser than 1. 
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Stability implies that we receive a MA term with coefficients tending against zero by repeating the 

substitution of the lagged Y variable. 

1
1
( )ε γ θ γ ε

∞

−
=

= + +∑ i
t t t

i
Y  

Y is non-stationary if γ = 1 and we get a typical situation of a random walk where the error term 

exhibits a permanent influence on the time series. Conversely, by repeating substitution of lagged 

error terms ε, we obtain an AR representation with against zero tending coefficients: 

1
( )( )γ θ θ ε

∞

−
=

= + − +∑ i
t t i t

i
Y Y  

Thus it appears that if θ = -1 the coefficients of the AR representation independent of the lag are 

always (θ + γ) and therefore the time series cannot be approximated by an AR process. 

The difference of Y is under the assumption ⎟ θ⎪ < 1 a I(0) series. But differencing does not always 

result in a I(0) time series. For example, let us consider a trend stationary (or for a = 0 stationary) 

process: 
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Yt = c + at + εt. 

By differencing we obtain: 

 

Yt - Yt-1 = ∆Yt = a + εt - εt-1. 

 

For this reason the trend of the time series is indeed eliminated and the series is stationary with 

mean a. But, at the same time a noninvertible MA(1) process was generated with θ = -1 so that we 

obtain no I(0) series. In this context we speak about overdifferencing. 

 

Please note that: 

- trend stationary time series are not mean stationary but include a trend. This trend can be 

eliminated by including a trend component into the regression model 
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Yt = a + bt + βXt + εt. 

 

 As we can see above differencing is not appropriate to eliminate trends because the variance of 

the error term would increase. 

- difference stationary time series (which are most of economic time series) contain a 

stochastic trend, i.e. a non stationarity in the variance component so that with the length of 

forecasting horizon the uncertainty increases to endless. 

In this context only differencing results in a stationary time series. 

 

For stationarity of the error terms of the estimation equation Yt = a + βXt + εt the following rules are 

observed: 
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Yt ~ I(0) and Xt ~ I(0) ⇒ εt ~ I(0), 

Yt ~ I(1) and Xt ~ I(0) ⇒ εt ~ I(1), 

Yt ~ I(1) and Xt ~ I(1) ⇒ εt ~ I(1), if Y and X are not cointegrated, 

Yt ~ I(1) and Xt ~ I(1) ⇒ εt ~ I(0), if Y and X are cointegrated. 

 

The residuals are only then I(0) if both variables Y and X either are I(0) or I(1) and cointegrated. The 

simplest case of cointegration is given when Y and X are I(1) and the linear combination of both 

variables is I(0), i.e. the residuals are stationary.  

 

II.2 Random Walk 
 
A simple example for a stochastic (non-stationary) time series is a random walk: 
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( )t t t tY Y iid1 0,ε ε σ−= + ∼  

 

with a white noise error term εt and the properties as follows: 

 
the random walk (RW1) is also a fair game but in contrast to the martingale also implies not only 

zero autocovariance, ( )t sCov , 0ε ε =  for t s≠ , but also any non-linear transformation, e.g. 

( )2 2, 0Cov ε ε =t s  for  is uncorrelated. t s≠

 

[ ] [ ]
n

t n t t i t
i

E Y Y E Y
1

ε+ −  process is mean stationary 
=

= + =∑
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( ) ( )
n n

t n t i
i i

Var Y Var n2 2

1 1
ε σ σ+ −

= =

= = = ⋅∑ ∑  process is not variance stationary 

(the variance changes over time) 

( ) ( )
n

2
t+n t+n-s

i=1
Cov Y ,Y = σ t + n - s∑  process is not covariance stationary 

 

tε  is a special stationary stochastic process where the autocovariance equals zero. 

These properties of a distribution of tε  are called white noise. 

Y is also not stationary but the first difference of Y is a stationary random variable: 

 

t t t tY Y Y1 ε−− = ∆ =  

 

Time series that follow a random walk are integrated of order one I(1). By adding a constant to the 

random walk equation, we obtain a random walk with drift: 
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( )t t t tY a Y iid1 0,ε ε σ−= + + ∼  

 

If the constant is positive then Y exhibits an upward tendency and when the constant is negative, Y 

has a downward tendency. The first and second moments of a random walk with drift are: 

 

( ) ( )ε+ −
=

= + ⋅ + = + ⋅∑
n

t n t t i t
i

E Y Y n a E Y n a
1

 ⇒ process is not mean stationary 

 

( ) ( )ε σ σ+ −
=

= = = ⋅∑ ∑
n

t n t i
i

Var Y Var n2 2

1
 ⇒ process is not variance stationary (the 

variance increases linearly over time) 
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Random Walk without Drift 

Random walk with drift 
Trend stationary 

Random walk without drift
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Random walk with drift 

Trend  stationary

 

Accordingly, a random walk with drift defines a non-stationary random variable. The variance is 

infinite as n gets very large (increases linearly with slope a). The first difference yields, 
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t t tY Y a1 ε−− = + , 

 

which is a stationary sequence. In comparison to a trend stationary process, 

 

Yt = c + at + εt (with εt ~ i.i.d.(0, σ2)), 

 

which changes deterministically in time, a random walk with drift exhibits a stochastic trend. For both 

processes the expected change over t periods are indeed the same (t·a). Whereas for a random 

walk with drift the first difference is stationary, for a trend stationary process the deviations from the 

trend (Yt – at = c + εt) are stationary. 

30 



 Prof. Dr. Roland Füss  ●  Lecture Series in Applied Econometrics  ●  Summer Term 2008  

II.3 Nonstationarity and Unit Root Tests 
      (Dickey-Fuller and Augmented Dickey-Fuller Test) 
 

The most frequently used test of the null hypothesis of a I(1) series against a I(0) alternative 

hypothesis is the Dickey-Fuller t-test. First, let us consider this test in the simplest AR(1) case. The 

initial equation is: 

Yt = γYt-1 + εt

H0: γ = 1 ⇒ random walk without drift 

H1: γ < 1 ⇒ stationary AR(1) process 

This is a one-sided test with the null hypothesis of non-stationarity and the alternative hypothesis of 

stationarity. For an AR(1) process the t-statistic of the OLS estimation is biased, i.e. it does not follow 
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a t-distribution under the null hypothesis. Hence, Dickey and Fuller derive the distribution of this test 

statistic and determine the critical values. 

If we want to test a random walk with drift against the alternative of a stationary AR(1) process with a 

mean that does not equal zero, we have to insert a constant term into the regression equation: 

Yt = µ + γYt-1 + εt

H0: γ = 1 ⇒ random walk with drift 

H1: γ < 1 ⇒ stationary AR(1) process with mean µ ≠ 0 

Finally, for the alternative hypothesis of a trend stationary process we insert an additional trend 

variable into the regression equation: 

Yt = µ + βt + γYt-1 + εt
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H0: γ = 1 ⇒ random walk with drift and trend 

H1: γ < 1 ⇒ trend stationary 

The Dickey-Fuller test, however, may be biased if lagged differences 1p2 3, , ...t t tY Y Y− − − −∆ ∆ ∆

i
Y Y Y t Y Y

1

1 1
1

*

 effect 

. For this, we have to expand the test equation by subtracting the lagged variable on both sides. 

Subsequently, we complement the equation by p-1 lagged differences: 

tY∆

p

t t t t i t i tµ β γ ε
−

− −
=

− = ∆ = + + + Φ ∆ +∑ −  with   * 1γ γ= −  

H0: γ* = 0 ⇒ stationary AR(p-1) process in differences, i.e. nonstationary in levels 

H1: γ* < 0 ⇒ trend stationary AR(p) process 
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For this so-called Augmented Dickey-Fuller test, the same critical values are valid as for the simple 

model of this test. This means, if we do not consider any lag we obtain the simple Dickey-Fuller test. 

Let us turn to an AR(p) process: 

 

0 1 1 2 2 3 3 2 2 1 1 ε− − − − − + − − + −= + + + + + + + +…t t t t p t p p t p p t p  ty a a y a y a y a y a y a y

add and subtract: 1− +p t pa y  

0 1 1 2 2 3 3 2 2 1 1 1( ) ε− − − − − + − − + − += + + + + + + + − ∆ +…t t t t p t p p p t p p t p ty a a y a y a y a y a a y a y  

add and subtract: p  1 2( )− − ++p p ta a y

0 1 1 2 2 3 3 1 2 1( ) ε− − − − − + − += + + + + + + ∆ − ∆ +…t t t t p p t p p t p ty a a y a y a y a a y a y  
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We can take the difference and receive: 

0 1 1
2

γ β ε− − +  
=

∆ = + + ∆ +∑
p

t t i t i t
i

y a y y

 

1
1γ

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑

p

i
i

a  

 

1
β

=

= ∑
p

i j
j

a  

 

0γ =  in the first difference has a unit root when 1=∑ ia . 
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Sequential test procedure 
 

1. Starting with a relatively high number of 10 lags, 

 

2. Subsequently, reduce the number of lags until the last coefficient is significantly different from 

zero on the 10 % level. 

 

3. Compare the three different models (without drift and trend, with drift, and with drift and 

trend) by looking at the Akaike criterion. Then choose the model with the lowest Akaike 

criterion. 

 

4. If the value of the test statistic is bigger (or in absolute values smaller) than the critical value, 

you cannot reject the I(1) null hypothesis on conventional significance levels. 
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III.1 White Noise Property 
 

A time series is called white noise if {Yt} is a sequence of independently and identically distributed 

random variables with finite mean and variance. That means Yt = ut describes a pure random 

process with: 

 

E(ut) = 0 

Var(ut) = σ2

E(utus) = 0 ∀ t ≠ s 

 

and in addition ut is normal distributed. This assumption is expressed by writing: 

 

ut ~ i.i.d. N(0, σ2), 
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where i.i.d. stands for independently and identically distributed random variables. Time series 

processes with such properties are called white noise, whereas the assumption of normality is not 

obligatory. If normality is existent the process is refer to as Gaussian white noise. 
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