?****************************************** ? Problem Set 3: Multinomial Logit Model ? Tutorial in Microeconometrics ? Summer term 2008 ? Katrin Sommerfeld ?****************************************** options crt; freq N; read (file='L:\Microeconometrics\job.raw') job age sex low med high exper ; ? 1. Descriptive Statistics: msd(terse) @all; ?hist job; ?stop; ? Number of observations in every single job category select job=1; set blue=@nob; ? Blue collar select 1; select job=2; set self=@nob; ? Self-employed select 1; select job=3; set white=@nob; ? White collar select 1; select job=4; set civil=@nob; ? Civil service select 1; print blue self white civil; ?stop; ? 2. Multinomial Logit Model: logit (suffix=(_blue,_self,_white,_civil)) job c age sex low high exper ; ?print @coef; ?stop; ? 3. Relative Risk Ratios = Odds Ratios ? Here: Reference group = "Baseline alternative": Blue collar ? considered alternative: white collar genr rrhigh = exp(@coef(7) + @coef(8)*age + @coef(9)*sex + @coef(10)*low + @coef(11)*1 + @coef(12)*exper ); genr rrmed = exp(@coef(7) + @coef(8)*age + @coef(9)*sex + @coef(10)*low + @coef(11)*0 + @coef(12)*exper ); genr rrr =rrhigh/rrmed; msd(terse) rrr; ?stop; ? Same result, but quicker: set rrrage = exp(@coef(8)); print rrrage; set rrrsex = exp(@coef(9)); print rrrsex; set rrrlow = exp(@coef(10)); print rrrlow; set rrrhigh = exp(@coef(11)); print rrrhigh; set rrrexper = exp(@coef(12)); print rrrexper; ?stop; ? 4. Marginal effects ? Here: for sex ? "e" refers to: e to the power of x'bj, i.e. alternative-specific for alternative j genr eself = exp(@coef(1) + @coef(2)*age + @coef(3)*sex + @coef(4)*low + @coef(5)*high + @coef(6)*exper ) ; genr ewhite= exp(@coef(7) + @coef(8)*age + @coef(9)*sex + @coef(10)*low + @coef(11)*high + @coef(12)*exper ) ; genr ecivil= exp(@coef(13) + @coef(14)*age + @coef(15)*sex + @coef(16)*low + @coef(17)*high + @coef(18)*exper ) ; ? "sum" refers to the sum over all alternatives; 1 for reference category genr esum = 1 + eself + ewhite + ecivil ; ? "p" refers to the probability of choosing alternative j, i.e. the ratio of the two above genr pself = eself/esum; genr pwhite = ewhite/esum; genr pcivil = ecivil/esum; ? this sum refers to the sum of the products of alternative-specific probability with beta(j) genr sumsex = pself*@coef(3) + pwhite*@coef(9) + pcivil*@coef(15) ; ? "ME" refers to the marginal effect genr MEself = pself*(@coef(3) -sumsex); genr MEwhite = pwhite*(@coef(9) -sumsex); genr MEcivil = pcivil*(@coef(15)-sumsex); ? Now for the reference category: genr pblue = (1-pself-pwhite-pcivil); genr MEblue= pblue*(0-sumsex); msd(terse) MEself MEwhite MEcivil MEblue; end;